The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Human chaperonin 60 (Hsp60) stimulates bone resorption: structure/function relationships.

It is established that the molecular chaperone, chaperonin 60, from various bacteria and from Homo sapiens has cell-cell signalling activity and is able to induce proinflammatory cytokine synthesis. We previously reported that chaperonin 60 proteins from Gram-negative bacteria, but not mycobacteria, have the capacity to resorb cultured murine calvarial bone. We now report that lipopolysaccharide-low human recombinant chaperonin 60 ( Hsp60) is a relatively weak cytokine-inducing agonist but is a potent stimulator of murine calvarial bone resorption. The osteolytic activity of Hsp60 was significantly inhibited by indomethacin, interleukin-1 receptor antagonist, and osteoprotegerin, but 5-lipoxygenase inhibitors were less effective. Analysis of Hsp60 truncation mutants revealed that N-terminal mutants (Delta1-137, Delta1-358, and Delta1-465) retained bone resorbing activity. In contrast, a C-terminal truncation mutant (Delta1-26 + Delta466-573) was inactive. This suggests that the active domain in this protein is found within residues 466-573. It is now established that Hsp60 is present in the blood of the majority of the population with the normal range encompassing levels able to activate bone cells. The possibility exists that this protein could play a role in bone remodelling.[1]

References

  1. Human chaperonin 60 (Hsp60) stimulates bone resorption: structure/function relationships. Meghji, S., Lillicrap, M., Maguire, M., Tabona, P., Gaston, J.S., Poole, S., Henderson, B. Bone (2003) [Pubmed]
 
WikiGenes - Universities