Uncoupling of hypomyelination and glial cell death by a mutation in the proteolipid protein gene.
Proteolipid protein (PLP; M(r) 30,000) is a highly conserved major polytopic membrane protein in myelin but its cellular function remains obscure. Neurological mutant mice can often provide model systems for human genetic disorders. Mutations of the X-chromosome-linked PLP gene are lethal, identified first in the jimpy mouse and subsequently in patients with Pelizaeus-Merzbacher disease. The unexplained phenotype of these mutations includes degeneration and premature cell death of oligodendrocytes with associated hypomyelination. Here we show that a new mouse mutant rumpshaker is defined by the amino-acid substitution Ile-to-Thr at residue 186 in a membrane-embedded domain of PLP. Surprisingly, rumpshaker mice, although myelin-deficient, have normal longevity and a full complement of morphologically normal oligodendrocytes. Hypomyelination can thus be genetically separated from the PLP-dependent oligodendrocyte degeneration. We suggest that PLP has a vital function in glial cell development, distinct from its later role in myelin assembly, and that this dichotomy of action may explain the clinical spectrum of Pelizaeus-Merzbacher disease.[1]References
- Uncoupling of hypomyelination and glial cell death by a mutation in the proteolipid protein gene. Schneider, A., Montague, P., Griffiths, I., Fanarraga, M., Kennedy, P., Brophy, P., Nave, K.A. Nature (1992) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg