The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Oligodendroglia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Oligodendroglia

 

Psychiatry related information on Oligodendroglia

 

High impact information on Oligodendroglia

  • Recently we have shown that unlike Schwann cells, the process of myelination by oligodendrocyte is independent of Neuregulin1/ErbB signaling [7]
  • Here we show that Cnp1, which encodes 2',3'-cyclic nucleotide phosphodiesterase in oligodendrocytes, is essential for axonal survival but not for myelin assembly [8].
  • F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation [9].
  • Increasing evidence suggests that, in addition to the inhibitory Jagged1/Notch1 signaling cascade, other pathways act via Notch to mediate oligodendrocyte differentiation [9].
  • F3/Notch signaling promotes oligodendrocyte precursor cell differentiation and upregulates the myelin-related protein MAG in OLN-93 cells [9].
  • The oligodendrocyte lineage genes Olig1 and Olig2 encode related bHLH proteins that are coexpressed in neural progenitors [10].
 

Chemical compound and disease context of Oligodendroglia

 

Biological context of Oligodendroglia

  • Rio Hortega coined the term 'oligodendroglia' to define a glial cell population that exhibited few processes in his silver impregnated brain sections. [16]
  • Oligodendrocytes are the specialized cells, in the mammalian central nervous system (CNS), which wraps myelin sheath around neuronal processes called as axons [17]
  • A single oligodendrocytes can myelinate several axonal segments, the number varying between 1-30 [18]
  • Signals derived from astrocytes and neurons (mainly axons) greatly influence differentiation and the precise numbers of oligodendrocytes that are necessary to myelinate the entire CNS [19]
  • Several lines of evidence suggest that tyrosine phosphorylation is a key element in myelin formation, differentiation of oligodendrocytes and Schwann cells, and recovery from demyelinating lesions [1].
  • Under conditions in which oligodendrocytes inhibit neuronal regeneration, dimerization of IL-2 might provide a mechanism to permit nerve growth [20].
  • The results suggest that molecular mimicry between viral core proteins and TAL-H may play a role in breaking immunological tolerance and leading to a selective destruction of oligodendrocytes in MS [21].
  • Oligodendrocytes undergoing apoptosis expressed p75, and the absence of p75 resulted in a decrease in the number of apoptotic oligodendrocytes and increased survival of oligodendrocytes [22].
  • These findings show that LIF is released by astrocytes in response to ATP liberated from axons firing action potentials, and LIF promotes myelination by mature oligodendrocytes [23].
 

Anatomical context of Oligodendroglia

 

Associations of Oligodendroglia with chemical compounds

 

Gene context of Oligodendroglia

 

Analytical, diagnostic and therapeutic context of Oligodendroglia

References

  1. A critical role for the protein tyrosine phosphatase receptor type Z in functional recovery from demyelinating lesions. Harroch, S., Furtado, G.C., Brueck, W., Rosenbluth, J., Lafaille, J., Chao, M., Buxbaum, J.D., Schlessinger, J. Nat. Genet. (2002) [Pubmed]
  2. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Chen, M.S., Huber, A.B., van der Haar, M.E., Frank, M., Schnell, L., Spillmann, A.A., Christ, F., Schwab, M.E. Nature (2000) [Pubmed]
  3. Development of a monoclonal antibody against a tumor-associated antigen. Peng, W.W., Bressler, J.P., Tiffany-Castiglioni, E., de Vellis, J. Science (1982) [Pubmed]
  4. Glioblastoma infiltration into central nervous system tissue in vitro: involvement of a metalloprotease. Paganetti, P.A., Caroni, P., Schwab, M.E. J. Cell Biol. (1988) [Pubmed]
  5. Basic helix-loop-helix factors in cortical development. Ross, S.E., Greenberg, M.E., Stiles, C.D. Neuron (2003) [Pubmed]
  6. A functional role for corpora amylacea based on evidence from complement studies. Singhrao, S.K., Morgan, B.P., Neal, J.W., Newman, G.R. Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration. (1995) [Pubmed]
  7. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Brinkmann, B.G., Agarwal, A., Sereda, M.W., Garratt, A.N., Müller, T., Wende, H., Stassart, R.M., Nawaz, S., Humml, C., Velanac, V., Radyushkin, K., Goebbels, S., Fischer, T.M., Franklin, R.J., Lai, C., Ehrenreich, H., Birchmeier, C., Schwab, M.H., Nave, K.A. Neuron. (2008) [Pubmed]
  8. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Lappe-Siefke, C., Goebbels, S., Gravel, M., Nicksch, E., Lee, J., Braun, P.E., Griffiths, I.R., Nave, K.A. Nat. Genet. (2003) [Pubmed]
  9. F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Hu, Q.D., Ang, B.T., Karsak, M., Hu, W.P., Cui, X.Y., Duka, T., Takeda, Y., Chia, W., Sankar, N., Ng, Y.K., Ling, E.A., Maciag, T., Small, D., Trifonova, R., Kopan, R., Okano, H., Nakafuku, M., Chiba, S., Hirai, H., Aster, J.C., Schachner, M., Pallen, C.J., Watanabe, K., Xiao, Z.C. Cell (2003) [Pubmed]
  10. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Lu, Q.R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C.D., Rowitch, D.H. Cell (2002) [Pubmed]
  11. Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Deng, W., Rosenberg, P.A., Volpe, J.J., Jensen, F.E. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  12. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Li, J., Baud, O., Vartanian, T., Volpe, J.J., Rosenberg, P.A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  13. Central neuron-glial and glial-glial interactions following axon injury. Aldskogius, H., Kozlova, E.N. Prog. Neurobiol. (1998) [Pubmed]
  14. Interleukin-1beta promotes oligodendrocyte death through glutamate excitotoxicity. Takahashi, J.L., Giuliani, F., Power, C., Imai, Y., Yong, V.W. Ann. Neurol. (2003) [Pubmed]
  15. Neoplastic transformation of newborn rat oligodendrocytes in culture. Bressler, J.P., Cole, R., de Vellis, J. Cancer Res. (1983) [Pubmed]
  16. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Baumann, N., Pham-Dinh, D. Physiol. Rev. (2001) [Pubmed]
  17. The fine anatomy of the optic nerve of anurans--an electron microscope study. MATURANA, H.R. J. Biophys. Biochem. Cytol. (1960) [Pubmed]
  18. Biochemical subtypes of oligodendrocyte in the anterior medullary velum of the rat as revealed by the monoclonal antibody Rip. Butt, A.M., Ibrahim, M., Ruge, F.M., Berry, M. Glia. (1995) [Pubmed]
  19. Axonal control of oligodendrocyte development. Barres, B.A., Raff, M.C. J. Cell. Biol. (1999) [Pubmed]
  20. A transglutaminase that converts interleukin-2 into a factor cytotoxic to oligodendrocytes. Eitan, S., Schwartz, M. Science (1993) [Pubmed]
  21. Oligodendrocyte-specific expression and autoantigenicity of transaldolase in multiple sclerosis. Banki, K., Colombo, E., Sia, F., Halladay, D., Mattson, D.H., Tatum, A.H., Massa, P.T., Phillips, P.E., Perl, A. J. Exp. Med. (1994) [Pubmed]
  22. ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Beattie, M.S., Harrington, A.W., Lee, R., Kim, J.Y., Boyce, S.L., Longo, F.M., Bresnahan, J.C., Hempstead, B.L., Yoon, S.O. Neuron (2002) [Pubmed]
  23. Astrocytes promote myelination in response to electrical impulses. Ishibashi, T., Dakin, K.A., Stevens, B., Lee, P.R., Kozlov, S.V., Stewart, C.L., Fields, R.D. Neuron (2006) [Pubmed]
  24. The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Tsai, H.H., Frost, E., To, V., Robinson, S., Ffrench-Constant, C., Geertman, R., Ransohoff, R.M., Miller, R.H. Cell (2002) [Pubmed]
  25. Cracking the transcriptional code for cell specification in the neural tube. Marquardt, T., Pfaff, S.L. Cell (2001) [Pubmed]
  26. Proliferation of mature oligodendrocytes after trauma to the central nervous system. Ludwin, S.K. Nature (1984) [Pubmed]
  27. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Bergles, D.E., Roberts, J.D., Somogyi, P., Jahr, C.E. Nature (2000) [Pubmed]
  28. Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. McDonald, J.W., Althomsons, S.P., Hyrc, K.L., Choi, D.W., Goldberg, M.P. Nat. Med. (1998) [Pubmed]
  29. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Lin, S.C., Bergles, D.E. Nat. Neurosci. (2004) [Pubmed]
  30. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Arnett, H.A., Mason, J., Marino, M., Suzuki, K., Matsushima, G.K., Ting, J.P. Nat. Neurosci. (2001) [Pubmed]
  31. Reticulon family members modulate BACE1 activity and amyloid-beta peptide generation. He, W., Lu, Y., Qahwash, I., Hu, X.Y., Chang, A., Yan, R. Nat. Med. (2004) [Pubmed]
  32. Stimulation of oligodendroglial proliferation and maturation by interleukin-2. Benveniste, E.N., Merrill, J.E. Nature (1986) [Pubmed]
  33. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Stolt, C.C., Lommes, P., Sock, E., Chaboissier, M.C., Schedl, A., Wegner, M. Genes Dev. (2003) [Pubmed]
  34. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Cai, J., Qi, Y., Hu, X., Tan, M., Liu, Z., Zhang, J., Li, Q., Sander, M., Qiu, M. Neuron (2005) [Pubmed]
  35. Molecular characterization and in situ mRNA localization of the neural recognition molecule J1-160/180: a modular structure similar to tenascin. Fuss, B., Wintergerst, E.S., Bartsch, U., Schachner, M. J. Cell Biol. (1993) [Pubmed]
  36. The ectopic expression of myelin basic protein isoforms in Shiverer oligodendrocytes: implications for myelinogenesis. Allinquant, B., Staugaitis, S.M., D'Urso, D., Colman, D.R. J. Cell Biol. (1991) [Pubmed]
  37. Selective expression of the 180-kD component of the neural cell adhesion molecule N-CAM during development. Pollerberg, E.G., Sadoul, R., Goridis, C., Schachner, M. J. Cell Biol. (1985) [Pubmed]
  38. Disrupted proteolipid protein trafficking results in oligodendrocyte apoptosis in an animal model of Pelizaeus-Merzbacher disease. Gow, A., Southwood, C.M., Lazzarini, R.A. J. Cell Biol. (1998) [Pubmed]
  39. Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes. Ainger, K., Avossa, D., Morgan, F., Hill, S.J., Barry, C., Barbarese, E., Carson, J.H. J. Cell Biol. (1993) [Pubmed]
 
WikiGenes - Universities