The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Taxol- and okadaic acid-induced destabilization of bcl-2 mRNA is associated with decreased binding of proteins to a bcl-2 instability element.

The observation that overexpression of the anti-apoptotic protein Bcl-2 is associated with both cancer development and anti-cancer drug resistance suggests that factors which regulate bcl-2 expression may be important therapeutic targets. We report here that taxol or okadaic acid (OA) treatment of HL-60 cells reduced bcl-2 mRNA steady state levels to 50% of control cell levels in 20-24hr of treatment. The 3'-untranslated region of bcl-2 mRNA contains four potential A+U-rich elements (AREs), which are associated with mRNA destabilization. RNA gel mobility shift assays revealed that HL-60 cell extracts contain proteins that bind to RNA transcripts containing the first bcl-2 ARE ( ARE 1). ARE 1 binding activity was substantially reduced in extracts of cells treated for 20 hr with taxol or OA and was abolished after 32 hr of treatment. UV-induced RNA cross-linking assays revealed that untreated HL-60 cell extracts contain approximately eight proteins, ranging in size from 32 to 100 kDa, that bind to ARE 1 RNA. Following 20 hr of taxol or OA treatment, RNA cross-linking to approximately 70 and approximately 38 kDa proteins was greatly reduced, and cross-linking to four proteins of 45-60 kDa sizes was progressively reduced with 10-34 hr of OA or taxol treatment. Collectively, these results suggest a novel action of taxol and OA on bcl-2 expression, which involves bcl-2 mRNA downregulation through inactivation of bcl-2 mRNA stabilizing factors.[1]

References

 
WikiGenes - Universities