The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

An adenosine analogue, IB-MECA, down-regulates estrogen receptor alpha and suppresses human breast cancer cell proliferation.

Adenosine, a natural metabolite, plays important roles in several physiological and pathological processes, including modulation of cellular proliferation. Here, we report that among different adenosine analogues tested, micromolar concentrations of the A(3) adenosine receptor (A(3)AR)-selective agonist N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) completely inhibited the growth of the human breast cancer cell lines MCF-7 and ZR-75 while inducing apoptosis in T47D and Hs578T cells, which do not express A(3)AR mRNA. In MCF-7 cells, A(3)AR overexpression did not increase the sensitivity to drug treatment and an A(3)AR antagonist did not abolish IB-MECA effect. In search for mechanisms of the effect of this ligand, we found that in estrogen receptor alpha (ERalpha)-positive cells, IB-MECA rapidly down-regulated ERalpha at mRNA and protein levels and consequently at the transcriptional activity level. Moreover, overexpression of ERalpha in MCF-7 cells alleviated the proliferation inhibition induced by IB-MECA. The inhibitory effects on cell growth and to some extent on ERalpha were mimicked by 2-chloro-adenosine >3'-deoxyadenosine> adenosine but not by a variety of other ligands. Our studies indicate that IB-MECA can down-regulate ERalpha and inhibit proliferation or induce apoptosis in different breast cancer cell types and raise the possibility of using this and related compounds in breast cancer treatment.[1]

References

 
WikiGenes - Universities