The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Chronic subthalamic nucleus stimulation and striatal D2 dopamine receptors in Parkinson's disease--A [(11)C]-raclopride PET study.

CONTEXT: Subthalamic nucleus (STN) stimulation mechanism of action remains a matter for debate. In animals, an increased striatal dopamine (DA) release due to STN stimulation has been reported. OBJECTIVE: To determine in Parkinson's disease (PD) patients using positron emission tomography (PET) and [11C]-Raclopride, whether STN stimulation induces a striatal DA release. METHODS: Nine PD patients with bilateral STN stimulation were enrolled and underwent two [11C]-Raclopride PET scans. The scans were randomly performed in off and on stimulation conditions. Striatal [11C]-Raclopride binding potential (BP) was calculated using regions of interest and statistical parametric mapping. RESULTS: For PD patients, the mean [(11C]-Raclopride BP (+/- SD) were, in Off stimulation condition: 1.7 +/- 0.3 for the right caudate nucleus, 1.8 +/- 0.4 for the left caudate nucleus, 2.6 +/- 0.5 for the right putamenand 2.6 +/- 0.5 for the left putamen. In On stimulation condition: 1.7 +/- 0.4 for the right caudate nucleus, 1.9 +/- 0.5 for the left caudate nucleus, 2.8 +/- 0.7 for the right putamen and 2.7 +/- 0.8 for the left putamen. No significant difference of BP related to the stimulation was noted. CONCLUSION: STN stimulation does not produce significant variations of striatal DA release as assessed by PET and [11C]-Raclopride.[1]

References

  1. Chronic subthalamic nucleus stimulation and striatal D2 dopamine receptors in Parkinson's disease--A [(11)C]-raclopride PET study. Thobois, S., Fraix, V., Savasta, M., Costes, N., Pollak, P., Mertens, P., Koudsie, A., Le Bars, D., Benabid, A.L., Broussolle, E. J. Neurol. (2003) [Pubmed]
 
WikiGenes - Universities