The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Putamen


Psychiatry related information on Putamen


High impact information on Putamen


Chemical compound and disease context of Putamen


Biological context of Putamen

  • Using a genetic approach, we show that mice lacking dopamine (DA-deficient, or DD, mice) are resistant to the hypophagic effects of a moderate dose of AMPH (2 microg/g) but manifest normal AMPH-induced hypophagia after restoration of DA signaling in the caudate putamen by viral gene therapy [20].
  • Dopamine receptors, evaluated as 3H-spiperone binding sites, were unchanged in the putamen but decreased to 30% of control values in the caudate [21].
  • In the antitumor necrosis factor-alpha neutralizing antibody-treated rats, infarct volume was significantly reduced (P=0.014, n=7; respectively), and cerebral specific gravity was dramatically increased in the cortex and caudate putamen (P<0.001, n=7; respectively) in association with a reduction in MMP-9 and membrane type 1-MMP upregulation [22].
  • Ascorbate induces lipid peroxidation in human caudate and putamen, an effect that is further enhanced by guanyl and inosine nucleotides [23].
  • All of the compounds inhibited dopamine uptake in rat caudate putamen (IC50 = 24-4456 nM) which correlated significantly (r = 0.907; p > 0.0001) with binding affinities at the dopamine transporter [24].

Anatomical context of Putamen


Associations of Putamen with chemical compounds

  • We found that in the putamen there was a nearly complete depletion of dopamine in all subdivisions, with the greatest reduction in the caudal portions (less than 1 percent of the dopamine remaining) [30].
  • In the brains of deceased schizophrenics who underwent long-term treatment with antipsychotic drugs, the concentration of homovanillic acid (a dopamine metabolite) was significantly increased in the orbital frontal, cingulate, and temporal tip areas of the cortex, but not in the putamen or the nucleus accumbens [31].
  • CONCLUSIONS: Patients with SPD showed reduced volume and elevated relative glucose metabolic rate of the putamen compared with both schizophrenic patients and controls [32].
  • Using positron emission tomography and the carbon 11-labeled ligand raclopride, central D2-dopamine receptor occupancy in the putamen was determined in psychiatric patients treated with clinical doses of psychoactive drugs [33].
  • RESULTS: Subjects with MDD had a hypersensitive response to the rewarding effects of dextroamphetamine (2-fold increase; t(21) = 2.74, P = .01), with altered brain activation in the ventrolateral prefrontal cortex and the orbitofrontal cortex and the caudate and putamen (F(1,44) = 11.93, P = .001) [34].

Gene context of Putamen

  • Citrate synthase-corrected complex II-III activity was markedly reduced in both HD caudate (-29%) and putamen (-67%), and complex IV activity was reduced in HD putamen (-62%) [35].
  • 125I-NT-3 binding to sections of human basal ganglia resembled that seen in rat or cat, including high densities in the caudate, putamen, and superficial neocortex [36].
  • In the autopsied putamen of an asymptomatic GCH1 mutation carrier, we found that brain biopterin loss (-82%) paralleled that reported in dopa-responsive dystonia patients (-84%) [37].
  • In human tissue, LRRK2 mRNA was found in the corresponding brain areas caudatus and putamen at lower levels and dopamine neurons were also devoid of LRRK2 mRNA [38].
  • Although the caudate/putamen (CPu) expresses mPer1 and/or mPer2 mRNA, the function of these genes in this nucleus has not yet been elucidated [39].

Analytical, diagnostic and therapeutic context of Putamen


  1. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. Freed, C.R., Breeze, R.E., Rosenberg, N.L., Schneck, S.A., Kriek, E., Qi, J.X., Lone, T., Zhang, Y.B., Snyder, J.A., Wells, T.H. N. Engl. J. Med. (1992) [Pubmed]
  2. Nigrostriatal function in vitamin E deficiency: clinical, experimental, and positron emission tomographic studies. Dexter, D.T., Brooks, D.J., Harding, A.E., Burn, D.J., Muller, D.P., Goss-Sampson, M.A., Jenner, P.G., Marsden, C.D. Ann. Neurol. (1994) [Pubmed]
  3. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Bhatia, K.P., Marsden, C.D. Brain (1994) [Pubmed]
  4. Increase of preproenkephalin mRNA levels in the putamen of Parkinson disease patients with levodopa-induced dyskinesias. Calon, F., Birdi, S., Rajput, A.H., Hornykiewicz, O., Bédard, P.J., Di Paolo, T. J. Neuropathol. Exp. Neurol. (2002) [Pubmed]
  5. Neuroprotective effect of postischemic administration of sodium orthovanadate in rats with transient middle cerebral artery occlusion. Hasegawa, Y., Hamada, J., Morioka, M., Yano, S., Kawano, T., Kai, Y., Fukunaga, K., Ushio, Y. J. Cereb. Blood Flow Metab. (2003) [Pubmed]
  6. Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Teicher, M.H., Anderson, C.M., Polcari, A., Glod, C.A., Maas, L.C., Renshaw, P.F. Nat. Med. (2000) [Pubmed]
  7. NMDA receptor losses in putamen from patients with Huntington's disease. Young, A.B., Greenamyre, J.T., Hollingsworth, Z., Albin, R., D'Amato, C., Shoulson, I., Penney, J.B. Science (1988) [Pubmed]
  8. Eye movements in monkeys with local dopamine depletion in the caudate nucleus. II. Deficits in voluntary saccades. Kori, A., Miyashita, N., Kato, M., Hikosaka, O., Usui, S., Matsumura, M. J. Neurosci. (1995) [Pubmed]
  9. Ornithine decarboxylase in human brain: influence of aging, regional distribution, and Alzheimer's disease. Morrison, L.D., Cao, X.C., Kish, S.J. J. Neurochem. (1998) [Pubmed]
  10. Chronic psychosocial stress reduces the density of dopamine transporters. Isovich, E., Mijnster, M.J., Flügge, G., Fuchs, E. Eur. J. Neurosci. (2000) [Pubmed]
  11. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Gill, S.S., Patel, N.K., Hotton, G.R., O'Sullivan, K., McCarter, R., Bunnage, M., Brooks, D.J., Svendsen, C.N., Heywood, P. Nat. Med. (2003) [Pubmed]
  12. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Wilson, J.M., Kalasinsky, K.S., Levey, A.I., Bergeron, C., Reiber, G., Anthony, R.M., Schmunk, G.A., Shannak, K., Haycock, J.W., Kish, S.J. Nat. Med. (1996) [Pubmed]
  13. Neuropeptide Y distribution in human brain. Adrian, T.E., Allen, J.M., Bloom, S.R., Ghatei, M.A., Rossor, M.N., Roberts, G.W., Crow, T.J., Tatemoto, K., Polak, J.M. Nature (1983) [Pubmed]
  14. Alterations in L-glutamate binding in Alzheimer's and Huntington's diseases. Greenamyre, J.T., Penney, J.B., Young, A.B., D'Amato, C.J., Hicks, S.P., Shoulson, I. Science (1985) [Pubmed]
  15. PET studies and motor complications in Parkinson's disease. Brooks, D.J. Trends Neurosci. (2000) [Pubmed]
  16. Elevated serotonin and reduced dopamine in subregionally divided Huntington's disease striatum. Kish, S.J., Shannak, K., Hornykiewicz, O. Ann. Neurol. (1987) [Pubmed]
  17. Excitatory amino acid binding sites in the caudate nucleus and frontal cortex of Huntington's disease. Dure, L.S., Young, A.B., Penney, J.B. Ann. Neurol. (1991) [Pubmed]
  18. Patterns of cerebral glucose utilization in Parkinson's disease and Huntington's disease. Kuhl, D.E., Metter, E.J., Riege, W.H., Markham, C.H. Ann. Neurol. (1984) [Pubmed]
  19. Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Hilker, R., Klein, C., Ghaemi, M., Kis, B., Strotmann, T., Ozelius, L.J., Lenz, O., Vieregge, P., Herholz, K., Heiss, W.D., Pramstaller, P.P. Ann. Neurol. (2001) [Pubmed]
  20. Dysregulation of striatal dopamine signaling by amphetamine inhibits feeding by hungry mice. Cannon, C.M., Abdallah, L., Tecott, L.H., During, M.J., Palmiter, R.D. Neuron (2004) [Pubmed]
  21. Biochemical findings in a case of parkinsonism secondary to brain tumor. García de Y'ebenes, J., Gervas, J.J., Iglesias, J., Mena, M.A., Martín del Rio, R., Somoza, E. Ann. Neurol. (1982) [Pubmed]
  22. Tumor necrosis factor-alpha neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia. Hosomi, N., Ban, C.R., Naya, T., Takahashi, T., Guo, P., Song, X.Y., Kohno, M. J. Cereb. Blood Flow Metab. (2005) [Pubmed]
  23. Guanyl nucleotide interactions with dopaminergic binding sites labeled by [3H]spiroperidol in human caudate and putamen: guanyl nucleotides enhance ascorbate-induced lipid peroxidation and cause an apparent loss of high affinity binding sites. Andorn, A.C., Bacon, B.R., Nguyen-Hunh, A.T., Parlato, S.J., Stitts, J.A. Mol. Pharmacol. (1988) [Pubmed]
  24. Novel 4'-substituted and 4',4"-disubstituted 3 alpha-(diphenylmethoxy)tropane analogs as potent and selective dopamine uptake inhibitors. Newman, A.H., Kline, R.H., Allen, A.C., Izenwasser, S., George, C., Katz, J.L. J. Med. Chem. (1995) [Pubmed]
  25. Bimodal distribution of dopamine receptor densities in brains of schizophrenics. Seeman, P., Ulpian, C., Bergeron, C., Riederer, P., Jellinger, K., Gabriel, E., Reynolds, G.P., Tourtellotte, W.W. Science (1984) [Pubmed]
  26. Brain serotonin transporter binding potential measured with carbon 11-labeled DASB positron emission tomography: effects of major depressive episodes and severity of dysfunctional attitudes. Meyer, J.H., Houle, S., Sagrati, S., Carella, A., Hussey, D.F., Ginovart, N., Goulding, V., Kennedy, J., Wilson, A.A. Arch. Gen. Psychiatry (2004) [Pubmed]
  27. Preparation of [125I-Tyr27,Leu5]beta h-endorphin and its use for crosslinking of opioid binding sites in human striatum and NG108-15 neuroblastoma-glioma cells. Helmeste, D.M., Hammonds, R.G., Li, C.H. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  28. Autoradiographic comparison of the distribution of the neutral endopeptidase "enkephalinase" and of mu and delta opioid receptors in rat brain. Waksman, G., Hamel, E., Fournié-Zaluski, M.C., Roques, B.P. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  29. Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6-OHDA lesions. II. Transplant-induced behavioral recovery. Nikkhah, G., Cunningham, M.G., McKay, R., Björklund, A. J. Neurosci. (1995) [Pubmed]
  30. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. Kish, S.J., Shannak, K., Hornykiewicz, O. N. Engl. J. Med. (1988) [Pubmed]
  31. Antipsychotic drug action in schizophrenic patients: effect on cortical dopamine metabolism after long-term treatment. Bacopoulos, N.C., Spokes, E.G., Bird, E.D., Roth, R.H. Science (1979) [Pubmed]
  32. Striatal size and relative glucose metabolic rate in schizotypal personality disorder and schizophrenia. Shihabuddin, L., Buchsbaum, M.S., Hazlett, E.A., Silverman, J., New, A., Brickman, A.M., Mitropoulou, V., Nunn, M., Fleischman, M.B., Tang, C., Siever, L.J. Arch. Gen. Psychiatry (2001) [Pubmed]
  33. Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Farde, L., Wiesel, F.A., Halldin, C., Sedvall, G. Arch. Gen. Psychiatry (1988) [Pubmed]
  34. Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probe. Tremblay, L.K., Naranjo, C.A., Graham, S.J., Herrmann, N., Mayberg, H.S., Hevenor, S., Busto, U.E. Arch. Gen. Psychiatry (2005) [Pubmed]
  35. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Browne, S.E., Bowling, A.C., MacGarvey, U., Baik, M.J., Berger, S.C., Muqit, M.M., Bird, E.D., Beal, M.F. Ann. Neurol. (1997) [Pubmed]
  36. Characterization and topography of high-affinity 125I-neurotrophin-3 binding to mammalian brain. Altar, C.A., Criden, M.R., Lindsay, R.M., DiStefano, P.S. J. Neurosci. (1993) [Pubmed]
  37. Brain biopterin and tyrosine hydroxylase in asymptomatic dopa-responsive dystonia. Furukawa, Y., Kapatos, G., Haycock, J.W., Worsley, J., Wong, H., Kish, S.J., Nygaard, T.G. Ann. Neurol. (2002) [Pubmed]
  38. LRRK2 expression linked to dopamine-innervated areas. Galter, D., Westerlund, M., Carmine, A., Lindqvist, E., Sydow, O., Olson, L. Ann. Neurol. (2006) [Pubmed]
  39. Sensitized increase of period gene expression in the mouse caudate/putamen caused by repeated injection of methamphetamine. Nikaido, T., Akiyama, M., Moriya, T., Shibata, S. Mol. Pharmacol. (2001) [Pubmed]
  40. Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson's disease. Spencer, D.D., Robbins, R.J., Naftolin, F., Marek, K.L., Vollmer, T., Leranth, C., Roth, R.H., Price, L.H., Gjedde, A., Bunney, B.S. N. Engl. J. Med. (1992) [Pubmed]
  41. Optimal effectiveness of BDNF for fetal nigral transplants coincides with the ontogenic appearance of BDNF in the striatum. Yurek, D.M., Hipkens, S.B., Wiegand, S.J., Altar, C.A. J. Neurosci. (1998) [Pubmed]
  42. Lesions of the nigrostriatal dopamine projection increase the inhibitory effects of D1 and D2 dopamine agonists on caudate-putamen neurons and relieve D2 receptors from the necessity of D1 receptor stimulation. Hu, X.T., Wachtel, S.R., Galloway, M.P., White, F.J. J. Neurosci. (1990) [Pubmed]
  43. Immunochemical analysis of dopamine transporter protein in Parkinson's disease. Miller, G.W., Staley, J.K., Heilman, C.J., Perez, J.T., Mash, D.C., Rye, D.B., Levey, A.I. Ann. Neurol. (1997) [Pubmed]
  44. Adenosine A(2A) receptors are colocalized with and activate g(olf) in rat striatum. Kull, B., Svenningsson, P., Fredholm, B.B. Mol. Pharmacol. (2000) [Pubmed]
WikiGenes - Universities