The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Caudate Nucleus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Caudate Nucleus

 

Psychiatry related information on Caudate Nucleus

 

High impact information on Caudate Nucleus

 

Chemical compound and disease context of Caudate Nucleus

 

Biological context of Caudate Nucleus

 

Anatomical context of Caudate Nucleus

 

Associations of Caudate Nucleus with chemical compounds

 

Gene context of Caudate Nucleus

  • ARPP-19 was also purified to homogeneity from bovine caudate nucleus cytosol [34].
  • Expression of NNMT was compared in PD and non-PD control cerebella and caudate nucleus [35].
  • RESULTS: Brain GAPDH activity was normal in all groups with the exception of a slight but statistically significant region-specific reduction in the patients with Huntington disease (caudate nucleus, -12%) and Alzheimer disease (temporal cortex, -19%) [36].
  • Similarly to that observed in the culture, intracerebral or systemic injections of mGlu2/3 receptor agonists enhanced TGF-beta1 formation in the rat or mouse caudate nucleus, and this effect was reduced by PD98059 [37].
  • (3)H-Ro 25-6981 binding to the NR1/NR2B NMDA receptor was increased in the putamen of PD patients experiencing motor complications compared to those who did not (+53%) and compared to controls (+18%) whereas binding remained unchanged in the caudate nucleus [38].
 

Analytical, diagnostic and therapeutic context of Caudate Nucleus

References

  1. Presynaptic dopaminergic deficits in Lesch-Nyhan disease. Ernst, M., Zametkin, A.J., Matochik, J.A., Pascualvaca, D., Jons, P.H., Hardy, K., Hankerson, J.G., Doudet, D.J., Cohen, R.M. N. Engl. J. Med. (1996) [Pubmed]
  2. Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Wieloch, T. Science (1985) [Pubmed]
  3. Opposing effects of dopaminergic to cholinergic compounds on a cerebral dopamine-activated adenylate cyclase. Tang, L.C., Cotzias, G.C. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  4. Focal contralateral myoclonus produced by inhibition of GABA action in the caudate nucleus of rats. Tarsy, D., Pycock, C.J., Meldrum, B.S., Marsden, C.D. Brain (1978) [Pubmed]
  5. Gene therapy of rat C6 glioma using adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene: long-term follow-up by magnetic resonance imaging. Maron, A., Gustin, T., Le Roux, A., Mottet, I., Dedieu, J.F., Brion, J.P., Demeure, R., Perricaudet, M., Octave, J.N. Gene Ther. (1996) [Pubmed]
  6. Huntington's chorea. Changes in neurotransmitter receptors in the brain. Enna, S.J., Bird, E.D., Bennett, J.P., Bylund, D.B., Yamamura, H.I., Iversen, L.L., Snyder, S.H. N. Engl. J. Med. (1976) [Pubmed]
  7. Tourette syndrome: prediction of phenotypic variation in monozygotic twins by caudate nucleus D2 receptor binding. Wolf, S.S., Jones, D.W., Knable, M.B., Gorey, J.G., Lee, K.S., Hyde, T.M., Coppola, R., Weinberger, D.R. Science (1996) [Pubmed]
  8. Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Jucaite, A., Fernell, E., Halldin, C., Forssberg, H., Farde, L. Biol. Psychiatry (2005) [Pubmed]
  9. Patterns of cerebral atrophy in HIV-1-infected individuals: results of a quantitative MRI analysis. Dal Pan, G.J., McArthur, J.H., Aylward, E., Selnes, O.A., Nance-Sproson, T.E., Kumar, A.J., Mellits, E.D., McArthur, J.C. Neurology (1992) [Pubmed]
  10. Neuropsychological effects of brain autograft of adrenal medullary tissue for the treatment of Parkinson's disease. Ostrosky-Solís, F., Quintanar, L., Madrazo, I., Drucker-Colín, R., Franco-Bourland, R., Leon-Meza, V. Neurology (1988) [Pubmed]
  11. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. Kish, S.J., Shannak, K., Hornykiewicz, O. N. Engl. J. Med. (1988) [Pubmed]
  12. Inverse relationship between neurotensin receptors and neurotensin-like immunoreactivity in cat striatum. Goedert, M., Mantyh, P.W., Emson, P.C., Hunt, S.P. Nature (1984) [Pubmed]
  13. Delayed transneuronal death of substantia nigra neurons prevented by gamma-aminobutyric acid agonist. Saji, M., Reis, D.J. Science (1987) [Pubmed]
  14. Selective sparing of a class of striatal neurons in Huntington's disease. Ferrante, R.J., Kowall, N.W., Beal, M.F., Richardson, E.P., Bird, E.D., Martin, J.B. Science (1985) [Pubmed]
  15. GM1 ganglioside treatment facilitates behavioral recovery from bilateral brain damage. Sabel, B.A., Slavin, M.D., Stein, D.G. Science (1984) [Pubmed]
  16. Wilson's disease studied with FDG and positron emission tomography. Hawkins, R.A., Mazziotta, J.C., Phelps, M.E. Neurology (1987) [Pubmed]
  17. What excitotoxin kills striatal neurons in Huntington's disease? Clues from neurochemical studies. Perry, T.L., Hansen, S. Neurology (1990) [Pubmed]
  18. Selective blockade of type-1 metabotropic glutamate receptors induces neuroprotection by enhancing gabaergic transmission. Battaglia, G., Bruno, V., Pisani, A., Centonze, D., Catania, M.V., Calabresi, P., Nicoletti, F. Mol. Cell. Neurosci. (2001) [Pubmed]
  19. Coadministration of haloperidol and SCH-23390 prevents the increase in "perforated" synapses due to either drug alone. Meshul, C.K., Janowsky, A., Casey, D.E., Stallbaumer, R.K., Taylor, B. Neuropsychopharmacology (1992) [Pubmed]
  20. Altered muscarinic and nicotinic receptor densities in cortical and subcortical brain regions in Parkinson's disease. Lange, K.W., Wells, F.R., Jenner, P., Marsden, C.D. J. Neurochem. (1993) [Pubmed]
  21. Regulation of dopamine stimulation of striatal adenylate cyclase by an endogenous Ca++ -binding protein. Gnegy, M.E., Uzunov, P., Costa, n.u.l.l. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  22. ARPP-21, a cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Amino acid sequence of ARPP-21B from bovine caudate nucleus. Williams, K.R., Hemmings, H.C., LoPresti, M.B., Greengard, P. J. Neurosci. (1989) [Pubmed]
  23. Effects of amphetamine on intracellular responses of caudate neurons in the cat. Schneider, J.S., Levine, M.S., Hull, C.D., Buchwald, N.A. J. Neurosci. (1984) [Pubmed]
  24. Quantitative neuropathological changes in presymptomatic Huntington's disease. Gómez-Tortosa, E., MacDonald, M.E., Friend, J.C., Taylor, S.A., Weiler, L.J., Cupples, L.A., Srinidhi, J., Gusella, J.F., Bird, E.D., Vonsattel, J.P., Myers, R.H. Ann. Neurol. (2001) [Pubmed]
  25. Eye movements in monkeys with local dopamine depletion in the caudate nucleus. I. Deficits in spontaneous saccades. Kato, M., Miyashita, N., Hikosaka, O., Matsumura, M., Usui, S., Kori, A. J. Neurosci. (1995) [Pubmed]
  26. Neonatal lesions of the medial temporal lobe disrupt prefrontal cortical regulation of striatal dopamine. Saunders, R.C., Kolachana, B.S., Bachevalier, J., Weinberger, D.R. Nature (1998) [Pubmed]
  27. Regional brain dopamine metabolism: a marker for the speed, direction, and posture of moving animals. Freed, C.R., Yamamoto, B.K. Science (1985) [Pubmed]
  28. Direct in vivo monitoring of dopamine released from two striatal compartments in the rat. Ewing, A.G., Bigelow, J.C., Wightman, R.M. Science (1983) [Pubmed]
  29. Enkephalin-induced depression of single neurons in brain areas with opiate receptors--antagonism by naloxone. Frederickson, R.C., Norris, F.H. Science (1976) [Pubmed]
  30. Huntington disease: genetics and epidemiology. Conneally, P.M. Am. J. Hum. Genet. (1984) [Pubmed]
  31. Coupling of dopamine D1 recognition sites with adenylate cyclase in nuclei accumbens and caudatus of schizophrenics. Memo, M., Kleinman, J.E., Hanbauer, I. Science (1983) [Pubmed]
  32. d-Amphetamine-induced inhibition of central dopaminergic neurons: mediation by a striato-nigral feedback pathway. Bunney, B.S., Achajanian, G.K. Science (1976) [Pubmed]
  33. Modulation of striatal dopaminergic function by local injection of 5'-N-ethylcarboxamide adenosine. Green, R.D., Proudfit, H.K., Yeung, S.M. Science (1982) [Pubmed]
  34. Purification and cDNA cloning of ARPP-16, a cAMP-regulated phosphoprotein enriched in basal ganglia, and of a related phosphoprotein, ARPP-19. Horiuchi, A., Williams, K.R., Kurihara, T., Nairn, A.C., Greengard, P. J. Biol. Chem. (1990) [Pubmed]
  35. Expression of nicotinamide N-methyltransferase (E.C. 2.1.1.1) in the Parkinsonian brain. Parsons, R.B., Smith, M.L., Williams, A.C., Waring, R.H., Ramsden, D.B. J. Neuropathol. Exp. Neurol. (2002) [Pubmed]
  36. Brain glyceraldehyde-3-phosphate dehydrogenase activity in human trinucleotide repeat disorders. Kish, S.J., Lopes-Cendes, I., Guttman, M., Furukawa, Y., Pandolfo, M., Rouleau, G.A., Ross, B.M., Nance, M., Schut, L., Ang, L., DiStefano, L. Arch. Neurol. (1998) [Pubmed]
  37. Neuroprotection mediated by glial group-II metabotropic glutamate receptors requires the activation of the MAP kinase and the phosphatidylinositol-3-kinase pathways. D'Onofrio, M., Cuomo, L., Battaglia, G., Ngomba, R.T., Storto, M., Kingston, A.E., Orzi, F., De Blasi, A., Di Iorio, P., Nicoletti, F., Bruno, V. J. Neurochem. (2001) [Pubmed]
  38. Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson's disease. Calon, F., Rajput, A.H., Hornykiewicz, O., Bédard, P.J., Di Paolo, T. Neurobiol. Dis. (2003) [Pubmed]
  39. Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Wong, D.F., Wagner, H.N., Tune, L.E., Dannals, R.F., Pearlson, G.D., Links, J.M., Tamminga, C.A., Broussolle, E.P., Ravert, H.T., Wilson, A.A. Science (1986) [Pubmed]
  40. Selective loss of cholinergic neurons in the ventral striatum of patients with Alzheimer disease. Lehéricy, S., Hirsch, E.C., Cervera, P., Hersh, L.B., Hauw, J.J., Ruberg, M., Agid, Y. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  41. Isolation and characterization of an endogenous C-terminal fragment of the alpha-neo-endorphin/dynorphin precursor from bovine caudate nucleus. Evans, C.J., Barchas, J.D., Esch, F.S., Böhlen, P., Weber, E. J. Neurosci. (1985) [Pubmed]
  42. RGSZ1, a Gz-selective regulator of G protein signaling whose action is sensitive to the phosphorylation state of Gzalpha. Glick, J.L., Meigs, T.E., Miron, A., Casey, P.J. J. Biol. Chem. (1998) [Pubmed]
  43. Distribution of free and conjugated dopamine in human caudate nucleus, hypothalamus, and kidney. Elchisak, M.A. J. Neurochem. (1983) [Pubmed]
 
WikiGenes - Universities