Nerve growth factor signaling involves interaction between the Trk A receptor and lysophosphatidate receptor 1 systems: nuclear translocation of the lysophosphatidate receptor 1 and Trk A receptors in pheochromocytoma 12 cells.
We report here that the nerve growth factor (NGF) and lysophosphatidate (LPA) receptor signaling systems interact to regulate the p42/p44 MAPK pathway in PC12 cells. This is based upon several lines of evidence. First, the treatment of PC12 cells, which express LPA(1) receptors, with a sub-maximal concentration of LPA and NGF induced synergistic activation of p42/p44 MAPK. Second, the transfection of PC12 cells with LPA(1) receptor anti-sense construct, which reduced the expression of LPA(1), abrogated both LPA- and NGF-stimulated activation of p42/p44 MAPK. Third, the over-expression of recombinant LPA(1) receptor potentiated LPA- and NGF-dependent activation of p42/p44 MAPK. Fourth, the over-expression of C-terminal GRK2 peptide (which sequesters G-protein betagamma subunits) or beta-arrestin I clathrin binding domain (amino acids: 319-418) or pre-treatment of cells with pertussis toxin reduced the LPA- and NGF-dependent stimulation of p42/p44 MAPK. These findings support a model in which the Trk A receptor uses a G-protein- mediated mechanism to regulate the p42/p44 MAPK pathway. Such G-protein-mediated signaling is activated by the LPA(1) receptor as a means of cross-talk regulation with the Trk A receptor. Fifth, the treatment of cells with LPA induced the transactivation of the Trk A receptor. Sixth, LPA and/or NGF stimulated the translocation of tyrosine phosphorylated Trk A receptor and LPA(1) receptor to the nucleus. Taken together, these findings suggest that NGF and LPA exert cross-talk regulation both at the level of p42/p44 MAPK signaling and in the nuclear translocation of LPA(1) and Trk A receptors.[1]References
- Nerve growth factor signaling involves interaction between the Trk A receptor and lysophosphatidate receptor 1 systems: nuclear translocation of the lysophosphatidate receptor 1 and Trk A receptors in pheochromocytoma 12 cells. Moughal, N.A., Waters, C., Sambi, B., Pyne, S., Pyne, N.J. Cell. Signal. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg