The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Activation of microglial poly(ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: a link between demyelination and neuronal damage.

Multiple sclerosis ( MS) is a chronic demyelinating disease in which it has only recently been suggested that damage to neuronal structures plays a key role. Here, we uncovered a link between the release of lipid breakdown products, found in the brain and cerebrospinal fluid (CSF) of MS patients as well as in experimental autoimmune encephalomyelitis, and neuronal damage mediated by microglial activation. The concentrations of the breakdown product 7-ketocholesterol detected in the CSF of MS patients were capable of inducing neuronal damage via the activation and migration of microglial cells in living brain tissue. 7-ketocholesterol rapidly entered the nucleus and activated poly(ADP-ribose)-polymerase (PARP)-1, followed by the expression of migration-regulating integrins CD11a and intercellular adhesion molecule 1. These findings reveal a novel mechanism linking demyelination and progressive neuronal damage, which might represent an underlying insidious process driving disease beyond a primary white matter phenomenon and rendering the microglial PARP-1 a possible antiinflammatory therapeutic target.[1]

References

  1. Activation of microglial poly(ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: a link between demyelination and neuronal damage. Diestel, A., Aktas, O., Hackel, D., Hake, I., Meier, S., Raine, C.S., Nitsch, R., Zipp, F., Ullrich, O. J. Exp. Med. (2003) [Pubmed]
 
WikiGenes - Universities