The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effect of S. cerevisiae APN1 protein on mammalian DNA base excision repair.

Mammalian cells transfected with the S. cerevisiae APN1 protein acquire resistance to oxidizing agents, the damage of which is mainly repaired via DNA base excision repair (BER). We have recently hypothesized that this effect might be linked to the possible capacity of APN1 to accelerate mammalian BER by its 3' diesterase activity. We have investigated here the effect of pure APN1 protein on BER performed by mouse embryonic fibroblast extracts. No significant acceleration was observed in the repair of either a single AP site cleaved by the bifunctional glycosylase NTH of E. coli or the repair of a single 8-oxoguanine, initiated by the bifunctional glycosylase OGG1. Similarly, no significant effect was observed on the repair of a single U (initiated by the monofunctional glycosylase U DNA glycosylase) or the repair of a single natural abasic site. The inability of APN1 to increase the efficiency of BER initiated by bifunctional glycosylases indicates that removal of 3' blocking fragments is not the rate-limiting step of this repair pathway.[1]


  1. Effect of S. cerevisiae APN1 protein on mammalian DNA base excision repair. Bogliolo, M., Cappelli, E., D'Osualdo, A., Rossi, O., Barbieri, O., Kelley, M.R., Frosina, G. Anticancer Res. (2003) [Pubmed]
WikiGenes - Universities