The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

SureCN22143     2-amino-3H-purine-6,8-dione

Synonyms: CHEBI:44605, AC1L3OKZ, 8-Oxyguanine, 82014-86-6, 8-oxo-7,8-dihydroguanine, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of 8-OXOGUANINE

 

Psychiatry related information on 8-OXOGUANINE

 

High impact information on 8-OXOGUANINE

 

Chemical compound and disease context of 8-OXOGUANINE

 

Biological context of 8-OXOGUANINE

 

Anatomical context of 8-OXOGUANINE

 

Associations of 8-OXOGUANINE with other chemical compounds

 

Gene context of 8-OXOGUANINE

  • In view of the ubiquity of OGG2, we have proposed a model named "bipartite antimutagenic processing of 8-oxoguanine" and is an extension of the original "GO model." The GO model explains the presence of OGG1 (MutM) that excises 8-oxoG from nonreplicated DNA [27].
  • Major substrates of these enzymes, a uracil opposite an adenine for UNG2 and an adenine opposite an 8-oxoguanine for MYH, are formed during DNA replication [28].
  • 8-Oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis [29].
  • These results represent the first demonstration of the essential contribution of BRCA1 and BRCA2 gene products in the repair of the 8-oxoguanine oxidative damage specifically located on the transcribed strand in human cells [30].
  • We show that deficiency for either BRCA1 or BRCA2 in human cancer cells leads to a block of the RNA polymerase II transcription machinery at the 8-oxoguanine site and impairs the transcription-coupled repair of the lesion, leading to a high mutation rate [30].
 

Analytical, diagnostic and therapeutic context of 8-OXOGUANINE

References

  1. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Le Page, F., Kwoh, E.E., Avrutskaya, A., Gentil, A., Leadon, S.A., Sarasin, A., Cooper, P.K. Cell (2005) [Pubmed]
  2. Transcriptional mutagenesis induced by uracil and 8-oxoguanine in Escherichia coli. Brégeon, D., Doddridge, Z.A., You, H.J., Weiss, B., Doetsch, P.W. Mol. Cell (2003) [Pubmed]
  3. Induction of cytochrome P4501A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin or indolo(3,2-b)carbazole is associated with oxidative DNA damage. Park, J.Y., Shigenaga, M.K., Ames, B.N. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  4. Reduced repair of the oxidative 8-oxoguanine DNA damage and risk of head and neck cancer. Paz-Elizur, T., Ben-Yosef, R., Elinger, D., Vexler, A., Krupsky, M., Berrebi, A., Shani, A., Schechtman, E., Freedman, L., Livneh, Z. Cancer Res. (2006) [Pubmed]
  5. Effect of polyphenolic extract, Pycnogenol(R), on the level of 8-oxoguanine in children suffering from attention deficit/hyperactivity disorder. Chovanov??, Z., Muchov??, J., Sivonov??, M., Dvor??kov??, M., Zitnanov??, I., Waczul??kov??, I., Trebatick??, J., Skod??cek, I., Durackov??, Z. Free Radic. Res. (2006) [Pubmed]
  6. Better late than never for repair of miscoding lesions within a transcribed template. Seeberg, E., Klungland, A. Mol. Cell (2003) [Pubmed]
  7. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. Charlet-Berguerand, N., Feuerhahn, S., Kong, S.E., Ziserman, H., Conaway, J.W., Conaway, R., Egly, J.M. EMBO J. (2006) [Pubmed]
  8. Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA. Serre, L., Pereira de Jésus, K., Boiteux, S., Zelwer, C., Castaing, B. EMBO J. (2002) [Pubmed]
  9. Site-specific DNA transesterification by vaccinia topoisomerase: effects of benzo[alpha]pyrene-dA, 8-oxoguanine, 8-oxoadenine and 2-aminopurine modifications. Yakovleva, L., Tian, L., Sayer, J.M., Kalena, G.P., Kroth, H., Jerina, D.M., Shuman, S. J. Biol. Chem. (2003) [Pubmed]
  10. Oxidative nucleotide damage: consequences and prevention. Sekiguchi, M., Tsuzuki, T. Oncogene (2002) [Pubmed]
  11. DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells. Liu, F., Jan, K.Y. Free Radic. Biol. Med. (2000) [Pubmed]
  12. Repair activities of 8-oxoguanine DNA glycosylase from Archaeoglobus fulgidus, a hyperthermophilic archaeon. Chung, J.H., Suh, M.J., Park, Y.I., Tainer, J.A., Han, Y.S. Mutat. Res. (2001) [Pubmed]
  13. Crystallization and preliminary X-ray analysis of Escherichia coli MutT in binary and ternary complex forms. Nakamura, T., Doi, T., Sekiguchi, M., Yamagata, Y. Acta Crystallogr. D Biol. Crystallogr. (2004) [Pubmed]
  14. A Drosophila ribosomal protein contains 8-oxoguanine and abasic site DNA repair activities. Yacoub, A., Augeri, L., Kelley, M.R., Doetsch, P.W., Deutsch, W.A. EMBO J. (1996) [Pubmed]
  15. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Blainey, P.C., van Oijen, A.M., Banerjee, A., Verdine, G.L., Xie, X.S. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  16. 8-Oxoguanine rearranges the active site of human topoisomerase I. Lesher, D.T., Pommier, Y., Stewart, L., Redinbo, M.R. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  17. Oxidative DNA damage and senescence of human diploid fibroblast cells. Chen, Q., Fischer, A., Reagan, J.D., Yan, L.J., Ames, B.N. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  18. Repair of 8-oxoguanine and Ogg1-incised apurinic sites in a CHO cell line. Boiteux, S., le Page, F. Prog. Nucleic Acid Res. Mol. Biol. (2001) [Pubmed]
  19. Repair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine dna glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial dna of OGG1-defective mice. de Souza-Pinto, N.C., Eide, L., Hogue, B.A., Thybo, T., Stevnsner, T., Seeberg, E., Klungland, A., Bohr, V.A. Cancer Res. (2001) [Pubmed]
  20. Nitrotyrosine formation, apoptosis, and oxidative damage: relationships to nitric oxide production in SJL mice bearing the RcsX tumor. Gal, A., Tamir, S., Kennedy, L.J., Tannenbaum, S.R., Wogan, G.N. Cancer Res. (1997) [Pubmed]
  21. Repair of 8-oxoguanine in DNA is deficient in Cockayne syndrome group B cells. Dianov, G., Bischoff, C., Sunesen, M., Bohr, V.A. Nucleic Acids Res. (1999) [Pubmed]
  22. Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1,N6-ethenoadenine and hypoxanthine but not of 3,N4-ethenocytosine or 8-oxoguanine. Hang, B., Singer, B., Margison, G.P., Elder, R.H. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  23. Redox Regulation of Human OGG1 Activity in Response to Cellular Oxidative Stress. Bravard, A., Vacher, M., Gouget, B., Coutant, A., de Boisferon, F.H., Marsin, S., Chevillard, S., Radicella, J.P. Mol. Cell. Biol. (2006) [Pubmed]
  24. Potential double-flipping mechanism by E. coli MutY. House, P.G., Volk, D.E., Thiviyanathan, V., Manuel, R.C., Luxon, B.A., Gorenstein, D.G., Lloyd, R.S. Prog. Nucleic Acid Res. Mol. Biol. (2001) [Pubmed]
  25. Substrate discrimination by formamidopyrimidine-DNA glycosylase: a mutational analysis. Zaika, E.I., Perlow, R.A., Matz, E., Broyde, S., Gilboa, R., Grollman, A.P., Zharkov, D.O. J. Biol. Chem. (2004) [Pubmed]
  26. Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. Dou, H., Mitra, S., Hazra, T.K. J. Biol. Chem. (2003) [Pubmed]
  27. Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions. Hazra, T.K., Hill, J.W., Izumi, T., Mitra, S. Prog. Nucleic Acid Res. Mol. Biol. (2001) [Pubmed]
  28. Molecular mechanism of PCNA-dependent base excision repair. Matsumoto, Y. Prog. Nucleic Acid Res. Mol. Biol. (2001) [Pubmed]
  29. 8-Oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis. Kunisada, M., Sakumi, K., Tominaga, Y., Budiyanto, A., Ueda, M., Ichihashi, M., Nakabeppu, Y., Nishigori, C. Cancer Res. (2005) [Pubmed]
  30. BRCA1 and BRCA2 are necessary for the transcription-coupled repair of the oxidative 8-oxoguanine lesion in human cells. Le Page, F., Randrianarison, V., Marot, D., Cabannes, J., Perricaudet, M., Feunteun, J., Sarasin, A. Cancer Res. (2000) [Pubmed]
  31. A novel HPLC procedure for the analysis of 8-oxoguanine in DNA. Herbert, K.E., Evans, M.D., Finnegan, M.T., Farooq, S., Mistry, N., Podmore, I.D., Farmer, P., Lunec, J. Free Radic. Biol. Med. (1996) [Pubmed]
  32. Fluorescence detection of 8-oxoguanine in nuclear and mitochondrial DNA of cultured cells using a recombinant Fab and confocal scanning laser microscopy. Soultanakis, R.P., Melamede, R.J., Bespalov, I.A., Wallace, S.S., Beckman, K.B., Ames, B.N., Taatjes, D.J., Janssen-Heininger, Y.M. Free Radic. Biol. Med. (2000) [Pubmed]
  33. A simpler, more robust method for the analysis of 8-oxoguanine in DNA. Beckman, K.B., Saljoughi, S., Mashiyama, S.T., Ames, B.N. Free Radic. Biol. Med. (2000) [Pubmed]
  34. Deoxyribonucleic acid damage and spontaneous mutagenesis in the thyroid gland of rats and mice. Maier, J., van Steeg, H., van Oostrom, C., Karger, S., Paschke, R., Krohn, K. Endocrinology (2006) [Pubmed]
 
WikiGenes - Universities