The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

KIC, a novel Ca2+ binding protein with one EF-hand motif, interacts with a microtubule motor protein and regulates trichome morphogenesis.

Kinesin-like calmodulin binding protein (KCBP) is a microtubule motor protein involved in the regulation of cell division and trichome morphogenesis. Genetic studies have shown that KCBP is likely to interact with several other proteins. To identify KCBP-interacting proteins, we used the C-terminal region of KCBP in a yeast two-hybrid screen. This screening resulted in the isolation of a novel KCBP-interacting Ca2+ binding protein (KIC). KIC, with its single EF-hand motif, bound Ca2+ at a physiological concentration. Coprecipitation with bacterially expressed protein and native KCBP, gel-mobility shift studies, and ATPase assays with the KCBP motor confirmed that KIC interacts with KCBP in a Ca2+-dependent manner. Interestingly, although both Ca2+-KIC and Ca2+-calmodulin were able to interact with KCBP and inhibit its microtubule binding activity, the concentration of Ca2+ required to inhibit the microtubule-stimulated ATPase activity of KCBP by KIC was threefold less than that required for calmodulin. Two KIC-related Ca2+ binding proteins and a centrin from Arabidopsis, which contain one and four EF-hand motifs, respectively, bound Ca2+ but did not affect microtubule binding and microtubule- stimulated ATPase activities of KCBP, indicating the specificity of Ca2+ sensors in regulating their targets. Overexpression of KIC in Arabidopsis resulted in trichomes with reduced branch number resembling the zwichel/kcbp phenotype. These results suggest that KIC modulates the activity of KCBP in response to changes in cytosolic Ca2+ and regulates trichome morphogenesis.[1]


WikiGenes - Universities