Development of respiratory function in the American locust Schistocerca americana. I. Across-instar effects.
We tested the hypothesis that oxygen delivery from the atmosphere to the tissues becomes more difficult as grasshoppers increase in body size throughout development due to increases in tracheal length. If this is true, then older, larger grasshoppers should have smaller safety margins [higher critical oxygen partial pressures (P(O2)s)] for oxygen delivery than younger, smaller grasshoppers. We exposed grasshoppers of first, third and fifth instars and adults to decreasing levels of atmospheric O2 and measured their ventilatory responses. Contrary to our prediction, we found that larger grasshoppers had critical P(O2)s eight times lower than juveniles due in part to their threefold lower mass-specific metabolic rates and their ability to quadruple convective gas exchange. Adults more than doubled abdominal pumping frequency and increased tidal volume by 25% as P(O2) decreased fourfold, whereas the youngest juveniles showed no such responses. This study indicates that juveniles may be more susceptible to hypoxia in natural situations, such as exposure to high altitude or restricted burrows. Also, larger size is not necessarily correlated with a smaller safety margin for oxygen delivery in insects.[1]References
- Development of respiratory function in the American locust Schistocerca americana. I. Across-instar effects. Greenlee, K.J., Harrison, J.F. J. Exp. Biol. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg