The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The use of c-src knockout mice for the identification of the main toxic signaling pathway of TCDD to induce wasting syndrome.

The effect of single intraperitoneal injection of 115 microg/kg of TCDD (i.e., approximately 1/2 of LD50) to male C57BL/6 mice on the liver mRNA expression changes of several growth factor related genes was assessed at 3 h, 24 h, 10 days, and 30 days posttreatment. The results revealed that the most consistently elevated mRNAs during the entire test period were those of c-Src, TGFalpha, and PDGFa. In contrast, those observed to be consistently suppressed were mRNAs for EGF receptor (EGFR), Ki-Ras, SAPKK, Sp-1, C/EBPbeta, and NFkB. Elevation of mRNAs for TGFbeta and STAT3 was observed only on day 10 and day 30. To assess the role of c-Src in the above action of TCDD, we conducted a parallel study with congenic C57BL/6 male c-src -/- mice. The results showed that in scr -/- mice the effect of TCDD was less in the case of mRNA expression of PDGF(AA), STAT3, C/EPBbeta, NMT-1, and AP-2gamma in addition to c-src as compared to scr +/+ mice. Those affected least by the absence of c-Src were SAPKK, and surprisingly, EGF receptor mRNAs, both of which were consistently downregulated in both strains. In most of the other cases, the extent of TCDD-induced changes were generally less pronounced in src -/- mice as compared to +/+ mice. These observations support the notion that c-Src is an important mediator of the effects of TCDD on TGFalpha, PDGF(AA), and C/EBPalpha, beta.[1]

References

  1. The use of c-src knockout mice for the identification of the main toxic signaling pathway of TCDD to induce wasting syndrome. Vogel, C.F., Zhao, Y., Wong, P., Young, N.F., Matsumura, F. J. Biochem. Mol. Toxicol. (2003) [Pubmed]
 
WikiGenes - Universities