The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The photocatalytic degradation of dicamba in TiO2 suspensions with the help of hydrogen peroxide by different near UV irradiations.

The direct photolysis and the photocatalytic degradations of dicamba in TiO2 suspensions with and without the use of hydrogen peroxide were studied using two different monochromatic UV irradiations (300 and 350 nm). Both the direct photolysis and photocatalytic degradations of dicamba follow pseudo-first-order decay kinetics. Photolysis reactions were slow but the corresponding photocatalysis rates were increased by about 3 and 5 times in the presence of TiO2 at 300 and 350 nm of UV, respectively. Photocatalytic rates were increased with the pH at acidic to neutral ranges because of the increase of hydroxide ions, but the reaction was gradually retarded at the alkaline medium due to the effect of charges repulsion. The different proton sources causing various degrees of rate retardation were due to the presence of the corresponding counter anions. The results of H2O2-assisted photocatalysis experiments showed that a low H2O2 dosage in photocatalysis using UV 300 nm would enhance the decay rate of dicamba by 2.4 times, but an overdose of H2O2 will retard the rate because of the expenditure of hydroxyl radicals. However, this process was found impracticable at UV 350 nm due to the absorption characteristic of H2O2. A neutral initial pH level was found to favour the H2O2-assisted photocatalysis at UV 300 nm. The reactions were highly retarded at the alkaline medium due to the unstable properties of H2O2.[1]


WikiGenes - Universities