The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Fibronectin matrix polymerization increases tensile strength of model tissue.

The composition and organization of the extracellular matrix ( ECM) contribute to the mechanical properties of tissues. The polymerization of fibronectin into the ECM increases actin organization and regulates the composition of the ECM. In this study, we examined the ability of cell-dependent fibronectin matrix polymerization to affect the tensile properties of an established tissue model. Our data indicate that fibronectin polymerization increases the ultimate strength and toughness, but not the stiffness, of collagen biogels. A fragment of fibronectin that stimulates mechanical tension generation by cells, but is not incorporated into ECM fibrils, did not increase the tensile properties, suggesting that changes in actin organization in the absence of fibronectin fibril formation are not sufficient to increase tensile strength. The actin cytoskeleton was needed to initiate the fibronectin-induced increases in the mechanical properties. However, once fibronectin-treated collagen biogels were fully contracted, the actin cytoskeleton no longer contributed to the tensile strength. These data indicate that fibronectin polymerization plays a significant role in determining the mechanical strength of collagen biogels and suggest a novel mechanism by which fibronectin can be used to enhance the mechanical performance of artificial tissue constructs.[1]

References

  1. Fibronectin matrix polymerization increases tensile strength of model tissue. Gildner, C.D., Lerner, A.L., Hocking, D.C. Am. J. Physiol. Heart Circ. Physiol. (2004) [Pubmed]
 
WikiGenes - Universities