The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Monoglyceride lipase-like enzymatic activity is responsible for hydrolysis of 2-arachidonoylglycerol in rat cerebellar membranes.

2-Arachidonoylglycerol (2-AG) is an endogenous cannabinoid that binds to CB1 and CB2 cannabinoid receptors, inducing cannabimimetic effects. However, the cannabimimetic effects of 2-AG are weak in vivo due to its rapid enzymatic hydrolysis. The enzymatic hydrolysis of 2-AG has been proposed to mainly occur by monoglyceride lipase (monoacylglycerol lipase). Fatty acid amide hydrolase (FAAH), the enzyme responsible for the hydrolysis of N-arachidonoylethanolamide (AEA), is also able to hydrolyse 2-AG. In the present study, we investigated the hydrolysis of endocannabinoids in rat cerebellar membranes and observed that enzymatic activity towards 2-AG was 50-fold higher than that towards AEA. Furthermore, various inhibitors for 2-AG hydrolase activity were studied in rat cerebellar membranes. 2-AG hydrolysis was inhibited by methyl arachidonylfluorophosphonate, hexadecylsulphonyl fluoride and phenylmethylsulphonyl fluoride with ic(50) values of 2.2 nM, 241 nM and 155 microM, respectively. Potent FAAH inhibitors, such as OL-53 and URB597, did not inhibit the hydrolysis of 2-AG, suggesting that 2-AG is inactivated in rat cerebellar membranes by an enzyme distinct of FAAH. The observation that the hydrolysis of 1(3)-AG and 2-AG occurred at equal rates supports the role of MGL in 2-AG inactivation. This enzyme assay provides a useful method for future inhibition studies of 2-AG degrading enzyme(s) in brain membrane preparation having considerably higher MGL-like activity when compared to FAAH activity.[1]

References

  1. Monoglyceride lipase-like enzymatic activity is responsible for hydrolysis of 2-arachidonoylglycerol in rat cerebellar membranes. Saario, S.M., Savinainen, J.R., Laitinen, J.T., Järvinen, T., Niemi, R. Biochem. Pharmacol. (2004) [Pubmed]
 
WikiGenes - Universities