The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Progesterone production by cultured luteal cells in the presence of bovine low- and high-density lipoproteins purified by heparin affinity chromatography.

The objectives of this study were to separate plasma lipoprotein particles based on the presence (low-density lipoproteins; LDL) or absence of apolipoprotein B (high-density lipoproteins; HDL) and to compare the abilities of bovine LDL and HDL to stimulate progesterone production by bovine luteal cells in culture. Plasma lipoproteins were isolated by ultracentrifugation and separated into LDL and HDL by heparin affinity chromatography. Luteal cultures were treated with LDL or HDL cholesterol for 48 h on d 3 of the culture (d 0 = day of dissociation). Progesterone production by luteal cells increased in a dose-dependent manner with increasing concentrations of either LDL or HDL cholesterol. There were no differences in the ability of LDL or HDL cholesterol to stimulate luteal cells to produce progesterone. Because LDL and HDL were equally potent, and experiment was designed to investigate the ability of modified LDL or reconstituted particles without apolipoproteins to stimulate progesterone production. Stimulation of luteal cell progesterone production by lysine-modified LDL was 70% of unmodified LDL. Progesterone production in the presence of phosphatidylcholine liposomes or BSA containing cholesterol was 50 and 108% of that obtained with HDL or LDL. Evidence indicated that apolipoprotein-free particles that contained free cholesterol but not cholesterol esters stimulated luteal cells to produce progesterone.[1]

References

 
WikiGenes - Universities