The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors.

Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), made by Fab1p, is essential for vesicle recycling from vacuole/lysosomal compartments and for protein sorting into multivesicular bodies. To isolate PtdIns(3,5)P2 effectors, we identified Saccharomyces cerevisiae mutants that display fab1delta-like vacuole enlargement, one of which lacked the SVP1/YFR021w/ATG18 gene. Expressed Svp1p displays PtdIns(3,5)P2 binding of exquisite specificity, GFP-Svp1p localises to the vacuole membrane in a Fab1p-dependent manner, and svp1delta cells fail to recycle a marker protein from the vacuole to the Golgi. Cells lacking Svp1p accumulate abnormally large amounts of PtdIns(3,5)P2. These observations identify Svp1p as a PtdIns(3,5)P2 effector required for PtdIns(3,5)P2-dependent membrane recycling from the vacuole. Other Svp1p-related proteins, including human and Drosophila homologues, bind PtdIns(3,5)P2 similarly. Svp1p and related proteins almost certainly fold as beta-propellers, and the PtdIns(3,5)P2-binding site is on the beta-propeller. It is likely that many of the Svp1p-related proteins that are ubiquitous throughout the eukaryotes are PtdIns(3,5)P2 effectors. Svp1p is not involved in the contributions of FAB1/PtdIns(3,5)P2 to MVB sorting or to vacuole acidification and so additional PtdIns(3,5)P2 effectors must exist.[1]

References

  1. Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. Dove, S.K., Piper, R.C., McEwen, R.K., Yu, J.W., King, M.C., Hughes, D.C., Thuring, J., Holmes, A.B., Cooke, F.T., Michell, R.H., Parker, P.J., Lemmon, M.A. EMBO J. (2004) [Pubmed]
 
WikiGenes - Universities