The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Proteasome inhibition induces a senescence-like phenotype in primary human fibroblasts cultures.

Senescent human fibroblasts exhibit several genetic and biochemical differences as compared to their young counterparts including abnormalities of the main proteolytic mechanism, namely the proteasome. Specifically, we and others have shown that there is an impaired function of the proteasome, as senescent cells have reduced proteolytic activities and less proteasome content. In a complementary work we have recently shown that inhibition of the proteasome by a specific inhibitor induces a senescence-like phenotype in young WI38 fibroblasts [Chondrogianni et al. (2003) J Biol Chem 278: 28026-28037]. In this study we tested whether the induction of a senescence-like phenotype following treatment with proteasome inhibitors is a common feature of primary human fibroblasts. A comparative biochemical analysis, after employing three different human fibroblasts cell lines (IMR90, MRC5 and WI38 cells), as well as two proteasome inhibitors (epoxomicin and MG132), has shown that proteasome inhibition results in the appearance of a senescence-like phenotype in all cell lines used. Proteasome inhibitors treated cells were irreversibly stopped dividing, exhibited positive staining to beta-galactosidase as well as reduced CT-L and PGPH activities. In summary, these data reveal the fundamental role of the proteasome in the progression of replicative senescence and open new dimensions towards a better understanding of protein degradation.[1]

References

 
WikiGenes - Universities