The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cell Aging

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cell Aging

 

Psychiatry related information on Cell Aging

 

High impact information on Cell Aging

 

Chemical compound and disease context of Cell Aging

 

Biological context of Cell Aging

 

Anatomical context of Cell Aging

 

Associations of Cell Aging with chemical compounds

 

Gene context of Cell Aging

  • The ability to reconstitute telomerase permits further analysis of its biochemical and biological roles in cell aging and carcinogenesis [29].
  • Werner syndrome protein limits MYC-induced cellular senescence [17].
  • These observations provide the first in vivo evidence that links cell senescence to aging due to impaired function of Brca1 at the expense of tumorigenesis [30].
  • CBX7 expression is downregulated during replicative senescence and its ablation by short-hairpin RNA (shRNA) treatment inhibited growth of normal cells though induction of the Ink4a/Arf locus [20].
  • The CDKN2A tumour suppressor locus encodes two distinct proteins, p16(INK4a) and p14(ARF), both of which have been implicated in replicative senescence, the state of permanent growth arrest provoked in somatic cells by aberrant proliferative signals or by cumulative population doublings in culture [31].
 

Analytical, diagnostic and therapeutic context of Cell Aging

References

  1. Telomere length, telomerase activity, and replicative potential in HIV infection: analysis of CD4+ and CD8+ T cells from HIV-discordant monozygotic twins. Palmer, L.D., Weng, N., Levine, B.L., June, C.H., Lane, H.C., Hodes, R.J. J. Exp. Med. (1997) [Pubmed]
  2. Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Roberson, R.S., Kussick, S.J., Vallieres, E., Chen, S.Y., Wu, D.Y. Cancer Res. (2005) [Pubmed]
  3. Polyamine depletion in human melanoma cells leads to G1 arrest associated with induction of p21WAF1/CIP1/SDI1, changes in the expression of p21-regulated genes, and a senescence-like phenotype. Kramer, D.L., Chang, B.D., Chen, Y., Diegelman, P., Alm, K., Black, A.R., Roninson, I.B., Porter, C.W. Cancer Res. (2001) [Pubmed]
  4. Oval cells compensate for damage and replicative senescence of mature hepatocytes in mice with fatty liver disease. Yang, S., Koteish, A., Lin, H., Huang, J., Roskams, T., Dawson, V., Diehl, A.M. Hepatology (2004) [Pubmed]
  5. Loss of the hSNF5 gene concomitantly inactivates p21CIP/WAF1 and p16INK4a activity associated with replicative senescence in A204 rhabdoid tumor cells. Chai, J., Charboneau, A.L., Betz, B.L., Weissman, B.E. Cancer Res. (2005) [Pubmed]
  6. Deletion of the triplet repeat encoding polyglutamine within the mouse Huntington's disease gene results in subtle behavioral/motor phenotypes in vivo and elevated levels of ATP with cellular senescence in vitro. Clabough, E.B., Zeitlin, S.O. Hum. Mol. Genet. (2006) [Pubmed]
  7. Cell aging in relation to stress arousal and cardiovascular disease risk factors. Epel, E.S., Lin, J., Wilhelm, F.H., Wolkowitz, O.M., Cawthon, R., Adler, N.E., Dolbier, C., Mendes, W.B., Blackburn, E.H. Psychoneuroendocrinology (2006) [Pubmed]
  8. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Campisi, J. Cell (2005) [Pubmed]
  9. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Narita, M., Nũnez, S., Heard, E., Narita, M., Lin, A.W., Hearn, S.A., Spector, D.L., Hannon, G.J., Lowe, S.W. Cell (2003) [Pubmed]
  10. Erosion of the telomeric single-strand overhang at replicative senescence. Stewart, S.A., Ben-Porath, I., Carey, V.J., O'Connor, B.F., Hahn, W.C., Weinberg, R.A. Nat. Genet. (2003) [Pubmed]
  11. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Morales, C.P., Holt, S.E., Ouellette, M., Kaur, K.J., Yan, Y., Wilson, K.S., White, M.A., Wright, W.E., Shay, J.W. Nat. Genet. (1999) [Pubmed]
  12. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., Lowe, S.W. Cell (1997) [Pubmed]
  13. Cyclin-dependent kinase 2 and cyclin A interaction with E2F are targets for tyrosine induction of B16 melanoma terminal differentiation. Rieber, M., Rieber, M.S. Cell Growth Differ. (1994) [Pubmed]
  14. The p53-independent activation of transcription of p21 WAF1/CIP1/SDI1 after acute renal failure. Megyesi, J., Udvarhelyi, N., Safirstein, R.L., Price, P.M. Am. J. Physiol. (1996) [Pubmed]
  15. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Pearson, M., Carbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S., Higashimoto, Y., Appella, E., Minucci, S., Pandolfi, P.P., Pelicci, P.G. Nature (2000) [Pubmed]
  16. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Brooks, C.L., Gu, W. Curr. Opin. Cell Biol. (2003) [Pubmed]
  17. Werner syndrome protein limits MYC-induced cellular senescence. Grandori, C., Wu, K.J., Fernandez, P., Ngouenet, C., Grim, J., Clurman, B.E., Moser, M.J., Oshima, J., Russell, D.W., Swisshelm, K., Frank, S., Amati, B., Dalla-Favera, R., Monnat, R.J. Genes Dev. (2003) [Pubmed]
  18. Long-term genome stability and minimal genotypic and phenotypic alterations in HPV16 E7-, but not E6-, immortalized human uroepithelial cells. Reznikoff, C.A., Belair, C., Savelieva, E., Zhai, Y., Pfeifer, K., Yeager, T., Thompson, K.J., DeVries, S., Bindley, C., Newton, M.A. Genes Dev. (1994) [Pubmed]
  19. Nucleolar Arf sequesters Mdm2 and activates p53. Weber, J.D., Taylor, L.J., Roussel, M.F., Sherr, C.J., Bar-Sagi, D. Nat. Cell Biol. (1999) [Pubmed]
  20. Polycomb CBX7 has a unifying role in cellular lifespan. Gil, J., Bernard, D., Martínez, D., Beach, D. Nat. Cell Biol. (2004) [Pubmed]
  21. Bmi1, stem cells, and senescence regulation. Park, I.K., Morrison, S.J., Clarke, M.F. J. Clin. Invest. (2004) [Pubmed]
  22. Regulation of telomerase activity in immortal cell lines. Holt, S.E., Wright, W.E., Shay, J.W. Mol. Cell. Biol. (1996) [Pubmed]
  23. Analysis of ku80-mutant mice and cells with deficient levels of p53. Lim, D.S., Vogel, H., Willerford, D.M., Sands, A.T., Platt, K.A., Hasty, P. Mol. Cell. Biol. (2000) [Pubmed]
  24. Induction of the Cdk inhibitor p21 by LY83583 inhibits tumor cell proliferation in a p53-independent manner. Lodygin, D., Menssen, A., Hermeking, H. J. Clin. Invest. (2002) [Pubmed]
  25. Distinct mechanisms of cell cycle arrest control the decision between differentiation and senescence in human neuroblastoma cells. Wainwright, L.J., Lasorella, A., Iavarone, A. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  26. Estrogen activates telomerase. Kyo, S., Takakura, M., Kanaya, T., Zhuo, W., Fujimoto, K., Nishio, Y., Orimo, A., Inoue, M. Cancer Res. (1999) [Pubmed]
  27. Progesterone inhibits human endometrial cancer cell growth and invasiveness: down-regulation of cellular adhesion molecules through progesterone B receptors. Dai, D., Wolf, D.M., Litman, E.S., White, M.J., Leslie, K.K. Cancer Res. (2002) [Pubmed]
  28. A phosphatidylinositol 3-kinase inhibitor induces a senescent-like growth arrest in human diploid fibroblasts. Tresini, M., Mawal-Dewan, M., Cristofalo, V.J., Sell, C. Cancer Res. (1998) [Pubmed]
  29. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Weinrich, S.L., Pruzan, R., Ma, L., Ouellette, M., Tesmer, V.M., Holt, S.E., Bodnar, A.G., Lichtsteiner, S., Kim, N.W., Trager, J.B., Taylor, R.D., Carlos, R., Andrews, W.H., Wright, W.E., Shay, J.W., Harley, C.B., Morin, G.B. Nat. Genet. (1997) [Pubmed]
  30. Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Cao, L., Li, W., Kim, S., Brodie, S.G., Deng, C.X. Genes Dev. (2003) [Pubmed]
  31. INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence. Brookes, S., Rowe, J., Ruas, M., Llanos, S., Clark, P.A., Lomax, M., James, M.C., Vatcheva, R., Bates, S., Vousden, K.H., Parry, D., Gruis, N., Smit, N., Bergman, W., Peters, G. EMBO J. (2002) [Pubmed]
  32. Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Sone, H., Kagawa, Y. Diabetologia (2005) [Pubmed]
  33. An altered repertoire of fos/jun (AP-1) at the onset of replicative senescence. Irving, J., Feng, J., Wistrom, C., Pikaart, M., Villeponteau, B. Exp. Cell Res. (1992) [Pubmed]
  34. Estrogen reduces endothelial progenitor cell senescence through augmentation of telomerase activity. Imanishi, T., Hano, T., Nishio, I. J. Hypertens. (2005) [Pubmed]
  35. Adenine and pyridine nucleotides during rabbit reticulocyte maturation and cell aging. Stocchi, V., Kolb, N., Cucchiarini, L., Segni, M., Magnani, M., Fornaini, G. Mech. Ageing Dev. (1987) [Pubmed]
  36. Long-Term Corneal Keratocyte Deficits After PRK and LASIK: In Vivo Evidence of Stress-Induced Premature Cellular Senescence. Dawson, D.G., O'brien, T.P., Edelhauser, H.F. Am. J. Ophthalmol. (2006) [Pubmed]
 
WikiGenes - Universities