The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Molecules of the bacterial cytoskeleton.

The structural elucidation of clear but distant homologs of actin and tubulin in bacteria and GFP labeling of these proteins promises to reinvigorate the field of prokaryotic cell biology. FtsZ (the tubulin homolog) and MreB/ParM (the actin homologs) are indispensable for cellular tasks that require the cell to accurately position molecules, similar to the function of the eukaryotic cytoskeleton. FtsZ is the organizing molecule of bacterial cell division and forms a filamentous ring around the middle of the cell. Many molecules, including MinCDE, SulA, ZipA, and FtsA, assist with this process directly. Recently, genes much more similar to tubulin than to FtsZ have been identified in Verrucomicrobia. MreB forms helices underneath the inner membrane and probably defines the shape of the cell by positioning transmembrane and periplasmic cell wall-synthesizing enzymes. Currently, no interacting proteins are known for MreB and its relatives that help these proteins polymerize or depolymerize at certain times and places inside the cell. It is anticipated that MreB-interacting proteins exist in analogy to the large number of actin binding proteins in eukaryotes. ParM (a plasmid-borne actin homolog) is directly involved in pushing certain single-copy plasmids to the opposite poles by ParR/parC-assisted polymerization into double-helical filaments, much like the filaments formed by actin, F-actin. Mollicutes seem to have developed special systems for cell shape determination and motility, such as the fibril protein in Spiroplasma.[1]


  1. Molecules of the bacterial cytoskeleton. Löwe, J., van den Ent, F., Amos, L.A. Annual review of biophysics and biomolecular structure. (2004) [Pubmed]
WikiGenes - Universities