Thrombin and lysophosphatidic acid receptors utilize distinct rhoGEFs in prostate cancer cells.
Thrombin and lysophosphatidic acid (LPA) receptors play important roles in vascular biology, development, and cancer. These receptors activate rho via G(12/13) family heterotrimeric G proteins, which are known to directly activate three distinct rho guanine nucleotide exchange factors (rhoGEFs) that contain a regulator of G protein signaling ( RGS) domain (RGS-rhoGEFs). However, it is not known which, if any, of these RGS-rhoGEFs (LARG (leukemia-associated rhoGEF), p115rhoGEF, or PDZrhoGEF) plays a role in G protein-coupled receptor-stimulated rho signaling. Using oligonucleotide small interfering RNAs that suppress specific RGS-rhoGEF expression, we show that thrombin receptor stimulation of rho is primarily mediated by LARG in HEK293T and PC-3 prostate cancer cell lines. In contrast, the LPA-stimulated rho response in PC-3 cells is dependent on PDZrhoGEF expression. Suppression of p115rhoGEF had no effect. Thus different rhoGEFs (LARG and PDZrhoGEF) mediate downstream rho signaling by the thrombin and LPA receptors.[1]References
- Thrombin and lysophosphatidic acid receptors utilize distinct rhoGEFs in prostate cancer cells. Wang, Q., Liu, M., Kozasa, T., Rothstein, J.D., Sternweis, P.C., Neubig, R.R. J. Biol. Chem. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg