The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

High sensitivity of northern pike larvae to UV-B but no UV-photoinduced toxicity of retene.

In order to investigate whether increased UV-B radiation is a risk factor, a series of acute laboratory experiments was conducted with larval stages of the northern pike (Esox lucius L.), hatching in Nordic waters in May. Further, a comparative investigation on the acute phototoxicity of retene (7-isopropyl-1-methylphenanthrene), a PAH compound recently revealed to posses UV-B-induced phototoxicity in larval coregonids, was conducted with pike larvae. In semi-static experiment, larvae were pre-exposed to retene (3, 9, 30 and 82 microg/g), with relevant controls, for 24 h and then irradiated for 3 h once a day (two consecutive days) with three UV-B doses (CIE-weighted 1.0, 1.8 or 2.7 kJ/m2 per day) or with visible light only. In 3 days, the UV-B exposure alone increased mortality by 10-20% in all applied dose rates. Retene (up to 82 microg/l) had no direct UV-B-induced toxicity in pike. However, pike larvae were very sensitive to UV-B even in low doses, indicated as severe neurobehavioral disorders. Monitoring of pike with the neurobehavioral syndrome revealed substantial late mortality. As UV-B had no influence on CYP1A content in larval pike, retene (9-82 microg/l) induced this protein substantially with and without UV-B. In pike, the applied UV-B radiation and water retene alone both decreased HSP70 concentrations. Neither UV nor retene changed SOD activity significantly. Overall, data on pike suggest that only a minor increase in ambient UV-B coming to the earth's surface may cause lethal effects to larval fish.[1]

References

  1. High sensitivity of northern pike larvae to UV-B but no UV-photoinduced toxicity of retene. Häkkinen, J., Vehniäinen, E., Oikari, A. Aquat. Toxicol. (2004) [Pubmed]
 
WikiGenes - Universities