The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Dermatitis, Phototoxic

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Dermatitis, Phototoxic

 

High impact information on Dermatitis, Phototoxic

 

Chemical compound and disease context of Dermatitis, Phototoxic

  • The implications of our results in connection with the relevance of oxygen-dependent photoreactions of chlorpromazine to its phototoxicity, and the possible appearance of hepatic alterations in patients treated with the drug after exposure to the sunlight, are discussed [10].
  • Due to problems of prolonged skin phototoxicity with hematoporphyrin derivative, new photosensitizers and methods of localization are being sought [11].
  • The phototoxicity in vitro of rhodamine 123 and tetrabromo rhodamine 123 (TBR) was compared, in order to assess their photochemotherapeutic potential [12].
  • Irradiation of MGH-U1 cells in the presence of the glutathione depleter buthionine sulfoximine also increased the phototoxicity, demonstrating a role for intracellular glutathione and possibly free radical intermediates [11].
  • This result shows that diaziquone can catalyze phototoxicity; the action spectrum of the drug may limit clinical applications of this phenomenon [13].
 

Biological context of Dermatitis, Phototoxic

 

Anatomical context of Dermatitis, Phototoxic

 

Gene context of Dermatitis, Phototoxic

  • Glutathione peroxidase activities were elevated following irradiation but returned to control levels within 0.5 h for both doses, implicating hydroperoxide formation as an early event in hypericin phototoxicity [24].
  • The green tea constituent (-)-epigallocatechin-3-gallate (EGCG) is a potent antioxidant and has shown remarkable preventive effects against photocarcinogenesis and phototoxicity in mouse models [25].
  • Preparation, phototoxicity and biodistribution studies of anti-carcinoembryonic antigen monoclonal antibody-phthalocyanine conjugates [26].
  • Phototoxicity was essentially identical in hisC3076, hisD3052 and hisG46 strains; uvrB- excision-repair-deficient bacteria were considerably more susceptible to lethal effects than wild-type parental strains, while the presence of pKM101 had no apparent effect on survival [27].
  • STUDY DESIGN/MATERIALS AND METHODS: CPAE, PTK2, and rat neonatal myocardial cells treated with ALA were examined for localization using fluorescence microscopy and for subcellular phototoxicity using 630 nm laser microbeam irradiation of specific subcellular regions [28].
 

Analytical, diagnostic and therapeutic context of Dermatitis, Phototoxic

References

  1. Activation of the complement system in patients with porphyrias after irradiation in vivo. Lim, H.W., Poh-Fitzpatrick, M.B., Gigli, I. J. Clin. Invest. (1984) [Pubmed]
  2. Role of oxygen radicals in the phototoxicity of tetracyclines toward Escherichia coli B. Martin, J.P., Colina, K., Logsdon, N. J. Bacteriol. (1987) [Pubmed]
  3. A bioassay using Artemia salina for detecting phototoxicity of plant coumarins. Ojala, T., Vuorela, P., Kiviranta, J., Vuorela, H., Hiltunen, R. Planta Med. (1999) [Pubmed]
  4. UVA-ketoprofen-induced hemoglobin radicals detected by immuno-spin trapping. He, Y.Y., Ramirez, D.C., Detweiler, C.D., Mason, R.P., Chignell, C.F. Photochem. Photobiol. (2003) [Pubmed]
  5. Phototoxic blisters from high frusemide dosage. Burry, J.N., Lawrence, J.R. Br. J. Dermatol. (1976) [Pubmed]
  6. Role of complement and polymorphonuclear cells in demethylchlortetracycline-induced phototoxicity in guinea pigs. Inhibition by decomplementation in vivo. Lim, H.W., Novotny, H., Gigli, I. J. Clin. Invest. (1983) [Pubmed]
  7. Phototoxicity of the tetracyclines: photosensitized emission of singlet delta dioxygen. Hasan, T., Khan, A.U. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  8. Antibody-targeted photolysis: selective photodestruction of human T-cell leukemia cells using monoclonal antibody-chlorin e6 conjugates. Oseroff, A.R., Ohuoha, D., Hasan, T., Bommer, J.C., Yarmush, M.L. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  9. Sustained activation of the extracellular signal-regulated kinase pathway protects cells from photofrin-mediated photodynamic therapy. Tong, Z., Singh, G., Rainbow, A.J. Cancer Res. (2002) [Pubmed]
  10. Toxic effects of the photoproducts of chlorpromazine on cultured hepatocytes. Castell, J.V., Gómez-Lechón, M.J., Miranda, M.A., Morera, I.M. Hepatology (1987) [Pubmed]
  11. Mechanism of photosensitization by microsphere-bound chlorin e6 in human bladder carcinoma cells. Bachor, R., Scholz, M., Shea, C.R., Hasan, T. Cancer Res. (1991) [Pubmed]
  12. Rhodamine dyes as potential agents for photochemotherapy of cancer in human bladder carcinoma cells. Shea, C.R., Chen, N., Wimberly, J., Hasan, T. Cancer Res. (1989) [Pubmed]
  13. Photosensitization of leukemia L1210 cells with diaziquone. Kessel, D., Thompson, P. Cancer Res. (1986) [Pubmed]
  14. Mitochondria and plasma membrane as targets of UVA-induced toxicity of neuroleptic drugs fluphenazine, perphenazine and thioridazine. Bastianon, C., Zanoni, R., Miolo, G., Caffieri, S., Reddi, E. Int. J. Biochem. Cell Biol. (2005) [Pubmed]
  15. Methylene blue-induced phototoxicity: an unrecognized complication. Porat, R., Gilbert, S., Magilner, D. Pediatrics (1996) [Pubmed]
  16. Exclusive free radical mechanisms of cellular photosensitization. Aveline, B.M., Redmond, R.W. Photochem. Photobiol. (1998) [Pubmed]
  17. Structure-activity studies of photoactivated antiviral and cytotoxic tricyclic thiophenes. Marles, R.J., Hudson, J.B., Graham, E.A., Soucy-Breau, C., Morand, P., Compadre, R.L., Compadre, C.M., Towers, G.H., Arnason, J.T. Photochem. Photobiol. (1992) [Pubmed]
  18. In vitro photodynamic activity of a series of methylene blue analogues. Mellish, K.J., Cox, R.D., Vernon, D.I., Griffiths, J., Brown, S.B. Photochem. Photobiol. (2002) [Pubmed]
  19. Phototoxicity mechanism of a kryptocyanine dye in human red cell membranes and isolated murine mitochondria. Valdes-Aguilera, O., Ara, G., Kochevar, I.E. Cancer Res. (1988) [Pubmed]
  20. Adaptive antioxidant response protects dermal fibroblasts from UVA-induced phototoxicity. Meewes, C., Brenneisen, P., Wenk, J., Kuhr, L., Ma, W., Alikoski, J., Poswig, A., Krieg, T., Scharffetter-Kochanek, K. Free Radic. Biol. Med. (2001) [Pubmed]
  21. Ascorbate enhances the toxicity of the photodynamic action of Verteporfin in HL-60 cells. Kramarenko, G.G., Wilke, W.W., Dayal, D., Buettner, G.R., Schafer, F.Q. Free Radic. Biol. Med. (2006) [Pubmed]
  22. In vivo mediator release and degranulation of mast cells in hematoporphyrin derivative-induced phototoxicity in mice. Kerdel, F.A., Soter, N.A., Lim, H.W. J. Invest. Dermatol. (1987) [Pubmed]
  23. Polycation liposome enhances the endocytic uptake of photosensitizer into cells in the presence of serum. Takeuchi, Y., Kurohane, K., Ichikawa, K., Yonezawa, S., Ori, H., Koishi, T., Nango, M., Oku, N. Bioconjug. Chem. (2003) [Pubmed]
  24. Antioxidant enzyme response to hypericin in EMT6 mouse mammary carcinoma cells. Johnson, S.A., Pardini, R.S. Free Radic. Biol. Med. (1998) [Pubmed]
  25. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Katiyar, S.K., Afaq, F., Perez, A., Mukhtar, H. Carcinogenesis (2001) [Pubmed]
  26. Preparation, phototoxicity and biodistribution studies of anti-carcinoembryonic antigen monoclonal antibody-phthalocyanine conjugates. Carcenac, M., Larroque, C., Langlois, R., van Lier, J.E., Artus, J.C., Pèlegrin, A. Photochem. Photobiol. (1999) [Pubmed]
  27. Psoralen photomutagenic specificity in Salmonella typhimurium. Koch, W.H. Mutat. Res. (1986) [Pubmed]
  28. Subcellular phototoxicity of 5-aminolaevulinic acid (ALA). Liang, H., Shin, D.S., Lee, Y.E., Nguyen, D.C., Trang, T.C., Pan, A.H., Huang, S.L., Chong, D.H., Berns, M.W. Lasers in surgery and medicine. (1998) [Pubmed]
  29. Chloroaluminum phthalocyanine tetrasulfonate delivered via acid-labile diplasmenylcholine-folate liposomes: intracellular localization and synergistic phototoxicity. Qualls, M.M., Thompson, D.H. Int. J. Cancer (2001) [Pubmed]
  30. Cell cultures in the investigation of thiazide phototoxicity. Selvaag, E. Naunyn Schmiedebergs Arch. Pharmacol. (1997) [Pubmed]
  31. Evaluation of porphyrin characteristics required for photodynamic therapy. Woodburn, K.W., Vardaxis, N.J., Hill, J.S., Kaye, A.H., Reiss, J.A., Phillips, D.R. Photochem. Photobiol. (1992) [Pubmed]
  32. Studies on curcumin and curcuminoids. IX: Investigation of the photobiological activity of curcumin using bacterial indicator systems. Tønnesen, H.H., de Vries, H., Karlsen, J., Beijersbergen van Henegouwen, G. Journal of pharmaceutical sciences. (1987) [Pubmed]
  33. ESR studies of a series of phthalocyanines. Mechanism of phototoxicity. Comparative quantitation of O2-. using ESR spin-trapping and cytochrome c reduction techniques. Viola, A., Jeunet, A., Decreau, R., Chanon, M., Julliard, M. Free Radic. Res. (1998) [Pubmed]
 
WikiGenes - Universities