The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Comparative analysis of the Kekkon molecules, related members of the LIG superfamily.

Leucine-rich repeats (LRRs) and immunoglobulin (Ig) domains represent two of the most abundant sequence elements in metazoan proteomes. Despite this prevalence, comparatively few molecules containing both LRR and Ig ( LIG) modules exist, and fewer still have been functionally defined. One LIG whose function has been investigated is the Drosophila protein Kekkon1 (Kek1). In vivo studies have demonstrated a role for Kek1 in Epidermal Growth Factor Receptor ( EGFR) signaling and have suggested a role in neuronal pathfinding. Kek1 is the founding member of the Kek family, a group of six Drosophila transmembrane proteins that contain seven LRRs and a single Ig in their extracellular domains. While this arrangement of domains predicts a possible role as cell adhesion molecules (CAMs), to date little is known about the function or evolutionary relationship of these additional Kek molecules. Here we report that orthologs of Kek1, Kek2, Kek5, and Kek6 exist in the mosquito, Anopheles gambiae, and the honeybee, Apis mellifera, indicating that this family has been conserved for ~300 million years of evolutionary time. Comparative sequence analyses reveal remarkable identity among these orthologs, primarily in their extracellular regions. In contrast, the intracellular regions are more divergent, exhibiting only small pockets of conservation. In addition, we provide support for the general notion that these molecules may share common functions as CAMs, by demonstrating that Kek family members can form homotypic and heterotypic complexes.[1]


  1. Comparative analysis of the Kekkon molecules, related members of the LIG superfamily. MacLaren, C.M., Evans, T.A., Alvarado, D., Duffy, J.B. Dev. Genes Evol. (2004) [Pubmed]
WikiGenes - Universities