The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Bees

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bees

  • Effects of European foulbrood treatment regime on oxytetracycline levels in honey extracted from treated honeybee (Apis mellifera) colonies and toxicity to brood [1].
 

Psychiatry related information on Bees

 

High impact information on Bees

  • Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera [3].
  • In the honeybee (Apis mellifera), vitellogenin is not only synthesized by the reproductive queen, but also by the functionally sterile workers [4].
  • The most potent antibacterial activity and the broadest activity spectrum were expressed by H1-Mel, a hybrid molecule composed of the N-terminal alpha-helix of amoebapore and the C-terminal hexapeptide of melittin from the venom of Apis mellifera [5].
  • The venom of honeybees, Apis mellifera, contains several biologically active peptides and two enzymes, one of which is a hyaluronidase [6].
  • The Apis blue opsin cDNA encodes a protein of 377 amino acids that is most closely related to other invertebrate visual pigments that are thought to be blue-sensitive [7].
 

Chemical compound and disease context of Bees

 

Biological context of Bees

  • Corresponding exons do not exist in the Apis tropomyosin gene, but equivalent sequences occur in a high-molecular weight Apis IFM-specific TpnI isoform (TnH) [10].
  • In the honeybee (Apis mellifera), cAMP-dependent signal transduction has been implicated in behavioural processes as well as in learning and memory [11].
  • Here we investigate the pattern of honeybee, Apis mellifera, mtDNA nucleotide polymorphisms inferred from phylogeny in terms of differences between the ATPase6, COI, COII, COIII, cytochrome b, and ND2 genes and strand asymmetry in mutation rates [12].
  • In comparison with the numerous Drosophila species and the mouse, the Gpdh gene in the honey bee Apis mellifera lacks most introns [13].
  • The tetramerization of melittin, a 26-amino acid peptide from Apis mellifera bee venom, has been studied as a model for protein folding [14].
 

Anatomical context of Bees

  • To test whether these novel Apis opsin genes encode functional visual pigments and to determine their spectral properties, we expressed them in the R1-6 photoreceptor cells of blind ninaE mutant Drosophila, which lack the major opsin of the fly compound eye [7].
  • 1. Acetylcholine-induced currents of mushroom body Kenyon cells from the honey bee Apis mellifera were studied using the whole-cell configuration of the patch clamp technique [15].
  • With antibodies to serotonin (5-HT) we have mapped immunoreactive neurons in the optic lobes of three species, the blowfly Calliphora, the desert ant Cataglyphis, and the worker bee Apis [16].
  • Using a sarcosyl/urea extraction, we were able to fractionate the microtubular cytoskeleton of the sperm flagellum of the insect Apis mellifera resulting in the dissociation of the axonemal microtubule protein components and the accessory tubules [17].
  • The expression patterns of the isolated Hox genes from Apis showed that the original expression patterns of Dfd, Scr, and Antp appear between late blastoderm and early germ band stage in a temporal and spatial sequence [18].
 

Associations of Bees with chemical compounds

  • The genetic architecture of sucrose responsiveness in the honeybee (Apis mellifera L.) [19].
  • Characterization of a dopamine D1 receptor from Apis mellifera: cloning, functional expression, pharmacology, and mRNA localization in the brain [20].
  • Activation of the heterologously expressed receptor of Apis mellifera leads to cyclic AMP production [20].
  • Differences in amino acid abundances are apparent between the predicted Apis and Drosophila proteins, with a relative abundance in the Apis proteins of lysine and a relative deficiency of alanine [21].
  • The antigenicity of the carbohydrate moiety of an insect glycoprotein, honey-bee (Apis mellifera) venom phospholipase A2. The role of alpha 1,3-fucosylation of the asparagine-bound N-acetylglucosamine [22].
 

Gene context of Bees

  • We analyzed the expression pattern of the Hox genes Deformed (Dfd), Sex combs reduced (Scr), Antennapedia (Antp), and Ultrabithorax/abdominal-A (Ubx/abd-A) from the honey bee Apis mellifera [18].
  • Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera) [23].
  • Here, we have compared the organization of the Dscam gene from three members of the Drosophila subgenus (D. melanogaster, D. pseudoobscura, and D. virilis), the mosquito Anopheles gambiae, and the honeybee Apis mellifera [24].
  • The phylogenetic analysis provides evidence that DmPAK3 and the related proteins from Drosophila pseudoobscura, Anopheles gambiae and Apis mellifera make up a distinct subgroup within the PAK protein family, which might be confined to insects [25].
  • Inhibition of COX-2 activity and proinflammatory cytokines (TNF-alpha and IL-1beta) production by water-soluble sub-fractionated parts from bee (Apis mellifera) venom [26].
 

Analytical, diagnostic and therapeutic context of Bees

References

  1. Effects of European foulbrood treatment regime on oxytetracycline levels in honey extracted from treated honeybee (Apis mellifera) colonies and toxicity to brood. Thompson, H.M., Waite, R.J., Wilkins, S., Brown, M.A., Bigwood, T., Shaw, M., Ridgway, C., Sharman, M. Food additives and contaminants. (2005) [Pubmed]
  2. Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera. Thany, S.H., Gauthier, M. Brain Res. (2005) [Pubmed]
  3. Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Müller, U. Neuron (1996) [Pubmed]
  4. Social exploitation of vitellogenin. Amdam, G.V., Norberg, K., Hagen, A., Omholt, S.W. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  5. Cytolytic and antibacterial activity of synthetic peptides derived from amoebapore, the pore-forming peptide of Entamoeba histolytica. Leippe, M., Andrä, J., Müller-Eberhard, H.J. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  6. Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Gmachl, M., Kreil, G. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  7. Honeybee blue- and ultraviolet-sensitive opsins: cloning, heterologous expression in Drosophila, and physiological characterization. Townson, S.M., Chang, B.S., Salcedo, E., Chadwell, L.V., Pierce, N.E., Britt, S.G. J. Neurosci. (1998) [Pubmed]
  8. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Suchail, S., Guez, D., Belzunces, L.P. Environ. Toxicol. Chem. (2001) [Pubmed]
  9. Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Nauen, R., Ebbinghaus-Kintscher, U., Schmuck, R. Pest Manag. Sci. (2001) [Pubmed]
  10. The coevolution of insect muscle TpnT and TpnI gene isoforms. Herranz, R., Mateos, J., Mas, J.A., García-Zaragoza, E., Cervera, M., Marco, R. Mol. Biol. Evol. (2005) [Pubmed]
  11. Molecular identification and functional characterization of an adenylyl cyclase from the honeybee. Wachten, S., Schlenstedt, J., Gauss, R., Baumann, A. J. Neurochem. (2006) [Pubmed]
  12. Current intraspecific dynamics of sequence evolution differs from long-term trends and can account for the AT-richness of honeybee mitochondrial DNA. Koulianos, S., Crozier, R.H. J. Mol. Evol. (1999) [Pubmed]
  13. sn-Glycerol-3-phosphate dehydrogenase in the honey bee Apis mellifera -an unusual phenotype associated with the loss of introns. Wilanowski, T.M., Gibson, J.B. Gene (1998) [Pubmed]
  14. Thermodynamics of melittin tetramerization determined by circular dichroism and implications for protein folding. Wilcox, W., Eisenberg, D. Protein Sci. (1992) [Pubmed]
  15. Nicotinic acetylcholine currents of cultured Kkenyon cells from the mushroom bodies of the honey bee Aapis mellifera. Goldberg, F., Grünewald, B., Rosenboom, H., Menzel, R. J. Physiol. (Lond.) (1999) [Pubmed]
  16. Mapping and ultrastructure of serotonin-immunoreactive neurons in the optic lobes of three insect species. Nässel, D.R., Meyer, E.P., Klemm, N. J. Comp. Neurol. (1985) [Pubmed]
  17. Accessory tubules and axonemal microtubules of Apis mellifera sperm flagellum differ in their tubulin isoform content. Mencarelli, C., Bré, M.H., Levilliers, N., Dallai, R. Cell Motil. Cytoskeleton (2000) [Pubmed]
  18. Hox genes in the honey bee Apis mellifera. Walldorf, U., Binner, P., Fleig, R. Dev. Genes Evol. (2000) [Pubmed]
  19. The genetic architecture of sucrose responsiveness in the honeybee (Apis mellifera L.). Rueppell, O., Chandra, S.B., Pankiw, T., Fondrk, M.K., Beye, M., Hunt, G., Page, R.E. Genetics (2006) [Pubmed]
  20. Characterization of a dopamine D1 receptor from Apis mellifera: cloning, functional expression, pharmacology, and mRNA localization in the brain. Blenau, W., Erber, J., Baumann, A. J. Neurochem. (1998) [Pubmed]
  21. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Crozier, R.H., Crozier, Y.C. Genetics (1993) [Pubmed]
  22. The antigenicity of the carbohydrate moiety of an insect glycoprotein, honey-bee (Apis mellifera) venom phospholipase A2. The role of alpha 1,3-fucosylation of the asparagine-bound N-acetylglucosamine. Prenner, C., Mach, L., Glössl, J., März, L. Biochem. J. (1992) [Pubmed]
  23. Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). Casteels, P., Ampe, C., Jacobs, F., Tempst, P. J. Biol. Chem. (1993) [Pubmed]
  24. The organization and evolution of the dipteran and hymenopteran Down syndrome cell adhesion molecule (Dscam) genes. Graveley, B.R., Kaur, A., Gunning, D., Zipursky, S.L., Rowen, L., Clemens, J.C. RNA (2004) [Pubmed]
  25. Phylogenetic and structural analysis of the Drosophila melanogaster p21-activated kinase DmPAK3. Mentzel, B., Raabe, T. Gene (2005) [Pubmed]
  26. Inhibition of COX-2 activity and proinflammatory cytokines (TNF-alpha and IL-1beta) production by water-soluble sub-fractionated parts from bee (Apis mellifera) venom. Nam, K.W., Je, K.H., Lee, J.H., Han, H.J., Lee, H.J., Kang, S.K., Mar, W. Arch. Pharm. Res. (2003) [Pubmed]
  27. A circular dichroism study of the structure of Apis mellifera melittin. Yunes, R.A. Arch. Biochem. Biophys. (1982) [Pubmed]
  28. Molecular cloning of cDNA and analysis of expression of the gene for alpha-glucosidase from the hypopharyngeal gland of the honeybee Apis mellifera L. Ohashi, K., Sawata, M., Takeuchi, H., Natori, S., Kubo, T. Biochem. Biophys. Res. Commun. (1996) [Pubmed]
  29. Quantity, analysis, and lethality of European and Africanized honey bee venoms. Schumacher, M.J., Schmidt, J.O., Egen, N.B., Lowry, J.E. Am. J. Trop. Med. Hyg. (1990) [Pubmed]
  30. Identification of a tachykinin-related neuropeptide from the honeybee brain using direct MALDI-TOF MS and its gene expression in worker, queen and drone heads. Takeuchi, H., Yasuda, A., Yasuda-Kamatani, Y., Kubo, T., Nakajima, T. Insect Mol. Biol. (2003) [Pubmed]
  31. Purification and characterization of beta-glucosidase from honey bees (Apis mellifera). Pontoh, J., Low, N.H. Insect Biochem. Mol. Biol. (2002) [Pubmed]
 
WikiGenes - Universities