The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The schiff base of gossypol with 3,6,9,12,15,18,21,24-octaoxa-pentacosylamine complexes and monovalent cations studied by electrospray ionization-mass spectrometry, (1)H nuclear magnetic resonance, Fourier transform infrared, as well as PM5 semiempirical methods.

A Schiff base of gossypol with 3,6,9,12,15,18,21,24-octaoxa-pentacosylamine (GSOB) forms stable complexes with monovalent cations. This process of complex formation was studied by electrospray ionization-mass spectrometry, (1)H-NMR and Fourier transform infrared spectroscopy as well as by the PM5 semiempirical method. It was found that GSOB forms 1:6 complexes with Li(+) and Na(+), and 1:4 complexes with K(+) as well as 1:2 complexes with Rb(+) or Cs(+) cations and exists in all these complexes in the enamine-enamine tautomeric form. Moreover, within these complexes only Li(+) cations can fluctuate between the oxygen atoms of the octaoxaalkyl chains. The interactions of Li(+) cations with hydroxyl groups of the gossypol part is also possible. All other cations are much more localized. In the complex of GSOB with protons, a 1:2 stoichiometry is realized. The two protons are localized on the N atoms of the Schiff base, and the complex exists in the imine-imine tautomeric form. The structures of the complexes are calculated by PM5 semiempirical methods and discussed.[1]


WikiGenes - Universities