Apical sensory neurones mediate developmental retardation induced by conspecific environmental stimuli in freshwater pulmonate snails.
Freshwater pond snails Helisoma trivolvis and Lymnaea stagnalis undergo larval development and metamorphosis inside egg capsules. We report that their development is permanently under slight tonic inhibitory influence of the anterior sensory monoaminergic neurones, which are the remnants of the apical sensory organ. Conspecific juvenile snails, when reared under conditions of starvation and crowding, release chemical signals that are detected by these neurones in encapsulated larvae and reversibly suppress larval development, thus providing a link between environmental signals and developmental regulation. Induced retardation starts from the trochophore stage and results in up to twofold prolongation of the larval lifespan. Upon stimulation with the signal, the neurones increase synthesis and release of monoamines [serotonin (5-HT) in Helisoma and dopamine in Lymnaea] that inhibit larval development acting via ergometrine-sensitive internal receptors. Thus, the novel regulatory mechanism in larval development of molluscs is suggested and compared with the phenomenon of dauer larvae formation in the nematode Caenorhabditis elegans.[1]References
- Apical sensory neurones mediate developmental retardation induced by conspecific environmental stimuli in freshwater pulmonate snails. Voronezhskaya, E.E., Khabarova, M.Y., Nezlin, L.P. Development (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg