The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Physical and mechanical properties of an experimental dental composite based on a new monomer.

OBJECTIVE: The purpose of this study was to investigate the physical and mechanical properties of a dental composite based on BTDMA, a new dimethacrylate monomer based on BTDA (3,3',4,4'-benzophenone tetracarboxylic dianhydride), and to compare these with the properties of a composite based on commonly used Bis-GMA monomer. METHODS: Experimental composites were prepared by mixing the silane-treated filler with the monomers. The prepared pastes were inserted into the test molds and heat-cured. Light-cured composites were also prepared using camphorquinone and amine as photoinitiator system. Degree of conversion of the light-cured and heat-cured composites was measured using FTIR spectroscopy. The flexural strength, flexural modulus, diametral tensile strength (DTS), water sorption, water contact angle, microhardness and thermal expansion coefficient of the prepared composites were measured and compared. Water uptake of the monomers was also measured. RESULTS: The results showed that the mechanical properties of the new composite are comparable with the properties of the Bis-GMA-based composite but its water sorption is higher. BTDMA as a monomer containing aromatic rings and carboxylic acid groups in its structure gives a composite with good mechanical properties. There is a close relation between the contact angle, water sorption of the cured composite and water uptake of their monomers. SIGNIFICANCE: Finding new monomers as alternatives for Bis-GMA have been a challenge in the field of dental materials and any investigation into the properties of new composites would be beneficial in the development of dental materials.[1]

References

  1. Physical and mechanical properties of an experimental dental composite based on a new monomer. Atai, M., Nekoomanesh, M., Hashemi, S.A., Amani, S. Dental materials : official publication of the Academy of Dental Materials. (2004) [Pubmed]
 
WikiGenes - Universities