The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Chronic morphine treatment alters N-methyl-D-aspartate receptors in freshly isolated neurons from nucleus accumbens.

Although there is now evidence of a role for N-methyl-D-aspartate (NMDA) receptors in nucleus accumbens (NAcc) neurons in the effects of chronic opiate treatment, the cellular and molecular mechanisms underlying this phenomenon are still unclear. Therefore, we studied the effects of chronic morphine on the pharmacological and biophysical properties of NMDA receptors in freshly isolated medium spiny neurons from NAcc. We found that chronic morphine treatment did not alter the affinity for NMDA receptor agonists such as glutamate, homoquinolinic acid, and NMDA, but decreased the affinity of glycine, the allosteric NMDA receptor coagonist, from 2.24 +/- 0.15 microM to 5.1 +/- 1.45 microM. Chronic morphine treatment also altered the affinity of two noncompetitive NMDA receptor antagonists, 7-chloro-kynurenic acid and ifenprodil. However, morphine had no effect on a third antagonist, D-(-)-2-amino-5-phosphonopentanoic acid. Single-exponential fits of desensitized NMDA current tails gave tau values ranging from 0.5 to 4 s in neurons from both control and morphine-treated rats. However, a shift to the left of the distribution of tau values after morphine treatment revealed that NMDA current desensitization rate was accelerated in a majority of NAcc neurons. Taken together with our recent molecular studies, our data are consistent with a shift away from NMDA receptor subunit (NR) NR2B and 2C function toward increased NR2A subunit expression or function after chronic morphine, a process that could alter excitability and integrative properties and may represent a neuroadaptation of NAcc medium spiny neurons underlying morphine dependence.[1]


  1. Chronic morphine treatment alters N-methyl-D-aspartate receptors in freshly isolated neurons from nucleus accumbens. Martin, G., Guadaño-Ferraz, A., Morte, B., Ahmed, S., Koob, G.F., De Lecea, L., Siggins, G.R. J. Pharmacol. Exp. Ther. (2004) [Pubmed]
WikiGenes - Universities