The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Nucleus Accumbens

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Nucleus Accumbens

 

Psychiatry related information on Nucleus Accumbens

 

High impact information on Nucleus Accumbens

 

Chemical compound and disease context of Nucleus Accumbens

 

Biological context of Nucleus Accumbens

 

Anatomical context of Nucleus Accumbens

 

Associations of Nucleus Accumbens with chemical compounds

  • Our findings indicate that extinction-induced plasticity in AMPA receptors may facilitate control over cocaine seeking by restoring glutamatergic tone in the nucleus accumbens, and may reduce the propensity for relapse under stressful situations in prolonged abstinence [13].
  • These effects of deltaFosB appear to be mediated partly by induction of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole) glutamate receptor subunit GluR2 in the nucleus accumbens [28].
  • Bilateral injections of either neurotensin (NT; 0.3, 1 or 5 micrograms in 1 microliter artificial CSF) or haloperidol (HA; 2.5 or 5 micrograms in 1 microliter 0.3% tartaric acid) into nucleus accumbens of rats markedly diminished the forward locomotion and rearing induced by d-amphetamine (AM; 2 mg per kg, IP) [29].
  • Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs [19].
  • In contrast, chronic exposure to cocaine does not induce these proteins, but instead causes the persistent expression of highly stable isoforms of deltaFosB. deltaFosB is also induced in the nucleus accumbens by repeated exposure to other drugs of abuse, including amphetamine, morphine, nicotine and phencyclidine [28].
 

Gene context of Nucleus Accumbens

 

Analytical, diagnostic and therapeutic context of Nucleus Accumbens

References

  1. A paradoxical regulation of the dopamine D3 receptor expression suggests the involvement of an anterograde factor from dopamine neurons. Lévesque, D., Martres, M.P., Diaz, J., Griffon, N., Lammers, C.H., Sokoloff, P., Schwartz, J.C. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  2. Inactivation of Gi and G(o) proteins in nucleus accumbens reduces both cocaine and heroin reinforcement. Self, D.W., Terwilliger, R.Z., Nestler, E.J., Stein, L. J. Neurosci. (1994) [Pubmed]
  3. Chronic hyperammonemia alters motor and neurochemical responses to activation of group I metabotropic glutamate receptors in the nucleus accumbens in rats in vivo. Canales, J.J., Elayadi, A., Errami, M., Llansola, M., Cauli, O., Felipo, V. Neurobiol. Dis. (2003) [Pubmed]
  4. Effect of GABAergic transmission in the subpallidal region on the hypermotility response to the administration of excitatory amino acids and picrotoxin into the nucleus accumbens. Shreve, P.E., Uretsky, N.J. Neuropharmacology (1988) [Pubmed]
  5. Comparative effects of infusions of 6-hydroxydopamine into nucleus accumbens and anterolateral hypothalamus induced by 6-hydroxydopamine on the response to dopamine agonists, body weight, locomotor activity and measures of exploration in the rat. Winn, P., Robbins, T.W. Neuropharmacology (1985) [Pubmed]
  6. Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Garris, P.A., Kilpatrick, M., Bunin, M.A., Michael, D., Walker, Q.D., Wightman, R.M. Nature (1999) [Pubmed]
  7. Norepinephrine in chronic paranoid schizophrenia: above-normal levels in limbic forebrain. Farley, I.J., Price, K.S., McCullough, E., Deck, J.H., Hordynski, W., Hornykiewicz, O. Science (1978) [Pubmed]
  8. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Chiamulera, C., Epping-Jordan, M.P., Zocchi, A., Marcon, C., Cottiny, C., Tacconi, S., Corsi, M., Orzi, F., Conquet, F. Nat. Neurosci. (2001) [Pubmed]
  9. Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Aragona, B.J., Liu, Y., Yu, Y.J., Curtis, J.T., Detwiler, J.M., Insel, T.R., Wang, Z. Nat. Neurosci. (2006) [Pubmed]
  10. Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine. Hikida, T., Kitabatake, Y., Pastan, I., Nakanishi, S. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  11. Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Xu, M., Hu, X.T., Cooper, D.C., Moratalla, R., Graybiel, A.M., White, F.J., Tonegawa, S. Cell (1994) [Pubmed]
  12. Brain neurotransmitters in dystonia musculorum deformans. Hornykiewicz, O., Kish, S.J., Becker, L.E., Farley, I., Shannak, K. N. Engl. J. Med. (1986) [Pubmed]
  13. Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Sutton, M.A., Schmidt, E.F., Choi, K.H., Schad, C.A., Whisler, K., Simmons, D., Karanian, D.A., Monteggia, L.M., Neve, R.L., Self, D.W. Nature (2003) [Pubmed]
  14. BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Guillin, O., Diaz, J., Carroll, P., Griffon, N., Schwartz, J.C., Sokoloff, P. Nature (2001) [Pubmed]
  15. mu-Opioid receptors modulate NMDA receptor-mediated responses in nucleus accumbens neurons. Martin, G., Nie, Z., Siggins, G.R. J. Neurosci. (1997) [Pubmed]
  16. Dopamine depletion reorganizes projections from the nucleus accumbens and ventral pallidum that mediate opioid-induced motor activity. Churchill, L., Klitenick, M.A., Kalivas, P.W. J. Neurosci. (1998) [Pubmed]
  17. Effects of an anxiogenic benzodiazepine receptor ligand on motor activity and dopamine release in nucleus accumbens and striatum in the rat. Brose, N., O'Neill, R.D., Boutelle, M.G., Anderson, S.M., Fillenz, M. J. Neurosci. (1987) [Pubmed]
  18. Somatostatin receptors. Raynor, K., Reisine, T. Critical reviews in neurobiology. (1992) [Pubmed]
  19. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Pontieri, F.E., Tanda, G., Orzi, F., Di Chiara, G. Nature (1996) [Pubmed]
  20. The type 1 equilibrative nucleoside transporter regulates ethanol intoxication and preference. Choi, D.S., Cascini, M.G., Mailliard, W., Young, H., Paredes, P., McMahon, T., Diamond, I., Bonci, A., Messing, R.O. Nat. Neurosci. (2004) [Pubmed]
  21. CREB modulates excitability of nucleus accumbens neurons. Dong, Y., Green, T., Saal, D., Marie, H., Neve, R., Nestler, E.J., Malenka, R.C. Nat. Neurosci. (2006) [Pubmed]
  22. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Mazzucchelli, C., Vantaggiato, C., Ciamei, A., Fasano, S., Pakhotin, P., Krezel, W., Welzl, H., Wolfer, D.P., Pagès, G., Valverde, O., Marowsky, A., Porrazzo, A., Orban, P.C., Maldonado, R., Ehrengruber, M.U., Cestari, V., Lipp, H.P., Chapman, P.F., Pouysségur, J., Brambilla, R. Neuron (2002) [Pubmed]
  23. Increased brain dopamine and dopamine receptors in schizophrenia. Mackay, A.V., Iversen, L.L., Rossor, M., Spokes, E., Bird, E., Arregui, A., Creese, I., Synder, S.H. Arch. Gen. Psychiatry (1982) [Pubmed]
  24. Non-dopaminergic fibres may regulate dopamine-sensitive adenylate cyclase in the prefrontal cortex and nucleus accumbens. Tassin, J.P., Simon, H., Hervé, D., Blanc, G., Le Moal, M., Glowinski, J., Bockaert, J. Nature (1982) [Pubmed]
  25. Subsecond dopamine release promotes cocaine seeking. Phillips, P.E., Stuber, G.D., Heien, M.L., Wightman, R.M., Carelli, R.M. Nature (2003) [Pubmed]
  26. RGS9 modulates dopamine signaling in the basal ganglia. Rahman, Z., Schwarz, J., Gold, S.J., Zachariou, V., Wein, M.N., Choi, K.H., Kovoor, A., Chen, C.K., DiLeone, R.J., Schwarz, S.C., Selley, D.E., Sim-Selley, L.J., Barrot, M., Luedtke, R.R., Self, D., Neve, R.L., Lester, H.A., Simon, M.I., Nestler, E.J. Neuron (2003) [Pubmed]
  27. Dopamine D1 receptors involved in locomotor activity and accumbens neural responses to prediction of reward associated with place. Tran, A.H., Tamura, R., Uwano, T., Kobayashi, T., Katsuki, M., Ono, T. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  28. Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Kelz, M.B., Chen, J., Carlezon, W.A., Whisler, K., Gilden, L., Beckmann, A.M., Steffen, C., Zhang, Y.J., Marotti, L., Self, D.W., Tkatch, T., Baranauskas, G., Surmeier, D.J., Neve, R.L., Duman, R.S., Picciotto, M.R., Nestler, E.J. Nature (1999) [Pubmed]
  29. Neurotensin blocks certain amphetamine-induced behaviours. Ervin, G.N., Birkemo, L.S., Nemeroff, C.B., Prange, A.J. Nature (1981) [Pubmed]
  30. Homer proteins regulate sensitivity to cocaine. Szumlinski, K.K., Dehoff, M.H., Kang, S.H., Frys, K.A., Lominac, K.D., Klugmann, M., Rohrer, J., Griffin, W., Toda, S., Champtiaux, N.P., Berry, T., Tu, J.C., Shealy, S.E., During, M.J., Middaugh, L.D., Worley, P.F., Kalivas, P.W. Neuron (2004) [Pubmed]
  31. The corticotropin-releasing factor receptor-1 pathway mediates the negative affective states of opiate withdrawal. Contarino, A., Papaleo, F. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  32. Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. Testa, C.M., Standaert, D.G., Young, A.B., Penney, J.B. J. Neurosci. (1994) [Pubmed]
  33. Morphine down-regulates melanocortin-4 receptor expression in brain regions that mediate opiate addiction. Alvaro, J.D., Tatro, J.B., Quillan, J.M., Fogliano, M., Eisenhard, M., Lerner, M.R., Nestler, E.J., Duman, R.S. Mol. Pharmacol. (1996) [Pubmed]
  34. Cholecystokinin modulates the release of dopamine from the anterior and posterior nucleus accumbens by two different mechanisms. Marshall, F.H., Barnes, S., Hughes, J., Woodruff, G.N., Hunter, J.C. J. Neurochem. (1991) [Pubmed]
  35. Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens. Stuber, G.D., Wightman, R.M., Carelli, R.M. Neuron (2005) [Pubmed]
  36. Sensorimotor gating and schizophrenia. Human and animal model studies. Braff, D.L., Geyer, M.A. Arch. Gen. Psychiatry (1990) [Pubmed]
  37. Microinjection of cocaine into the nucleus accumbens elicits locomotor activation in the rat. Delfs, J.M., Schreiber, L., Kelley, A.E. J. Neurosci. (1990) [Pubmed]
  38. NAC-1, a rat brain mRNA, is increased in the nucleus accumbens three weeks after chronic cocaine self-administration. Cha, X.Y., Pierce, R.C., Kalivas, P.W., Mackler, S.A. J. Neurosci. (1997) [Pubmed]
  39. Selective increase of NMDA-sensitive glutamate binding in the striatum of Parkinson's disease, Alzheimer's disease, and mixed Parkinson's disease/Alzheimer's disease patients: an autoradiographic study. Ułas, J., Weihmuller, F.B., Brunner, L.C., Joyce, J.N., Marshall, J.F., Cotman, C.W. J. Neurosci. (1994) [Pubmed]
 
WikiGenes - Universities