The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells.

Among the large family of intermediate filament proteins, the keratin 8 and 18 (K8/K18) pair constitutes a hallmark for all simple epithelial cells, such as hepatocytes and mammary cells. Functional studies with different cell models have suggested that K8/K18 are involved in simple epithelial cell resistance to several forms of stress that may lead to cell death. We have reported recently that K8/K18-deprived hepatocytes from K8-null mice are more sensitive to Fas-mediated apoptosis. Here we show that upon Fas, tumor necrosis factor alpha receptor, or tumor necrosis factor alpha-related apoptosis-inducing ligand receptor stimulation, an inhibition of extracellular signal-regulated kinase 1 and 2 (ERK1/2) activation sensitizes wild-type but not K8-null mouse hepatocytes to apoptosis and that a much weaker ERK1/2 activation occurs in K8-null hepatocytes. In turn, this impaired ERK1/2 activation in K8-null hepatocytes is associated with a drastic reduction in c-Flip protein, an event that also holds in a K8-null mouse mammary cell line. c-Flip, along with Raf-1, is part of a K8/K18-immunoisolated complex from wild-type hepatocytes, and Fas stimulation leads to further c-Flip and Raf-1 recruitment in the complex. This points to a new regulatory role of simple epithelium keratins in the c-Flip/ERK1/2 antiapoptotic signaling pathway.[1]

References

 
WikiGenes - Universities