Differential sensitivity of v-Myb and c-Myb to Wnt-1-induced protein degradation.
Recently we have shown that the c-myb proto-oncogene product ( c-Myb) is degraded in response to Wnt-1 signaling via the pathway involving TAK1 (transforming growth factor-beta-activated kinase), HIPK2 ( homeodomain-interacting protein kinase 2), and NLK ( Nemo-like kinase). NLK and HIPK2 bind directly to c-Myb, which results in the phosphorylation of c-Myb at multiple sites, followed by its ubiquitination and proteasome-dependent degradation. The v-myb gene carried by avian myeloblastosis virus has a transforming capacity, but the c-myb proto-oncogene does not. Here, we report that two characteristics of v-Myb make it relatively resistant to Wnt-1-induced protein degradation. First, HIPK2 binds with a lower affinity to the DNA- binding domain of v-Myb than to that of c-Myb. The mutations of three hydrophobic amino acids on the surface of the DNA-binding domain in v-Myb decrease the affinity to HIPK2. Second, a loss of multiple NLK phosphorylation sites by truncation of the C-terminal region of c-Myb increases its stability. Among 15 putative NLK phosphorylation sites in mouse c-Myb, the phosphorylation sites in the C-terminal region are more critical than other sites for Wnt-1-induced protein degradation. The relative resistance of v-Myb to Wnt-1-induced degradation may explain, at least in part, the differential transforming capacity of v-Myb versus c-Myb.[1]References
- Differential sensitivity of v-Myb and c-Myb to Wnt-1-induced protein degradation. Kanei-Ishii, C., Nomura, T., Tanikawa, J., Ichikawa-Iwata, E., Ishii, S. J. Biol. Chem. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg