The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid.

Bryophyte species growing in areas in which temperatures fall below zero in winter are likely to have tolerance to freezing stress. It is well established in higher plants that freezing tolerance is acquired by exposure to non-freezing low temperatures, accompanied by expression of various genes and increases in levels of the stress hormone abscisic acid (ABA). However, little is known about the physiological changes induced by cold acclimation in non-vascular plants such as bryophytes. We examined the effects of low temperatures on protonema cells of the moss Physcomitrella patens (Hedw.) Bruch and Schimp. The freezing tolerance of protonema cells was clearly increased by incubation at low temperatures ranging from 10 degrees C to 0 degrees C, with maximum tolerance achieved by incubation at 0 degrees C for several days. The enhancement of freezing tolerance by low temperatures occurred in both light and dark conditions and was accompanied by accumulation of several transcripts for late-embryogenesis-abundant (LEA) proteins and boiling-soluble proteins. By de-acclimation, low-temperature-induced expression of these transcripts and proteins, as well as the freezing tolerance, was reduced. Interestingly, endogenous levels of ABA in tissues or that secreted into the culture medium were not specifically increased by low-temperature treatment. Furthermore, removal of ABA from the medium by addition of activated charcoal did not affect low-temperature-induced freezing tolerance of the protonema cells. Our results provide evidence that bryophytes have an ABA-independent cold-signaling pathway leading to expression of stress-related genes and resultant acquisition of freezing tolerance.[1]

References

 
WikiGenes - Universities