The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Bryopsida

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bryopsida

 

High impact information on Bryopsida

  • Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens [2].
  • Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens [3].
  • Two cryptochrome genes were identified in Physcomitrella, and single and double disruptants of these genes were generated [3].
  • Multiubiquitin chain binding subunit MCB1 (RPN10) of the 26S proteasome is essential for developmental progression in Physcomitrella patens [4].
  • To study the recombination apparatus of a lower land plant, a recombination gene well characterized particularly in yeast, mouse, and man, the RAD51 gene, was isolated from the moss Physcomitrella patens and characterized [5].
 

Biological context of Bryopsida

 

Anatomical context of Bryopsida

 

Associations of Bryopsida with chemical compounds

  • Enzyme assays on a knock-out mutant revealed that PpHxk1 is the major glucose-phosphorylating enzyme in Physcomitrella, accounting for 80% of the total activity in protonemal tissue [10].
  • The moss Physcomitrella patens is thus the first plant species wherein PAPS reductase was confirmed on the molecular level and also the first organism wherein both APS- and PAPS-dependent sulfate assimilation co-exist [11].
  • To find possible alternative routes of sulfate assimilation we disrupted the adenosine 5'-phosphosulfate reductase single copy gene in Physcomitrella patens by homologous recombination [11].
  • A multifunctional lipoxygenase with fatty acid hydroperoxide cleaving activity from the moss Physcomitrella patens [12].
  • A complex mixture of fatty acid-derived aldehydes, ketones, and alcohols is released upon wounding of the moss Physcomitrella patens [12].
 

Gene context of Bryopsida

  • Characterization of two highly similar Rad51 homologs of Physcomitrella patens [13].
  • Here, we describe expressed R1R2R3-MYB genes from Physcomitrella patients++ and Arabidopsis thaliana, designated PpMYB3R-1 and AtMYB3R-1 [14].
  • The C to U editing event that converts an ACG codon to an AUG translation initiation codon in the chloroplast rps 14 transcript is unique to the moss Physcomitrella patens and has not been found in other species [15].
  • A cDNA encoding a homolog of the bacterial cell division protein FtsZ, an ancestral tubulin, was isolated from the eukaryote Physcomitrella patens and used to disrupt efficiently the genomic locus in this terrestrial seedless plant [16].
  • A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens [10].

References

  1. Cloning and characterization of an adenosine kinase from Physcomitrella involved in cytokinin metabolism. von Schwartzenberg, K., Kruse, S., Reski, R., Moffatt, B., Laloue, M. Plant J. (1998) [Pubmed]
  2. Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens. Lee, K.J., Sakata, Y., Mau, S.L., Pettolino, F., Bacic, A., Quatrano, R.S., Knight, C.D., Knox, J.P. Plant Cell (2005) [Pubmed]
  3. Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. Imaizumi, T., Kadota, A., Hasebe, M., Wada, M. Plant Cell (2002) [Pubmed]
  4. Multiubiquitin chain binding subunit MCB1 (RPN10) of the 26S proteasome is essential for developmental progression in Physcomitrella patens. Girod, P.A., Fu, H., Zryd, J.P., Vierstra, R.D. Plant Cell (1999) [Pubmed]
  5. The organization of Physcomitrella patensRAD51 genes is unique among eukaryotic organisms. Markmann-Mulisch, U., Hadi, M.Z., Koepchen, K., Alonso, J.C., Russo, V.E., Schell, J., Reiss, B. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  6. Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the moss Physcomitrella patens. Tanahashi, T., Sumikawa, N., Kato, M., Hasebe, M. Development (2005) [Pubmed]
  7. Immunofluorescence microscopy of microtubules in intact cell lineages of the moss, Physcomitrella patens. I. Normal and CIPC-treated tip cells. Doonan, J.H., Cove, D.J., Lloyd, C.W. J. Cell. Sci. (1985) [Pubmed]
  8. Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Minami, A., Nagao, M., Ikegami, K., Koshiba, T., Arakawa, K., Fujikawa, S., Takezawa, D. Planta (2005) [Pubmed]
  9. The evolution of the abscisic acid-response in land plants: comparative analysis of group 1 LEA gene expression in moss and cereals. Kamisugi, Y., Cuming, A.C. Plant Mol. Biol. (2005) [Pubmed]
  10. A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens. Olsson, T., Thelander, M., Ronne, H. J. Biol. Chem. (2003) [Pubmed]
  11. Functional knockout of the adenosine 5'-phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation. Koprivova, A., Meyer, A.J., Schween, G., Herschbach, C., Reski, R., Kopriva, S. J. Biol. Chem. (2002) [Pubmed]
  12. A multifunctional lipoxygenase with fatty acid hydroperoxide cleaving activity from the moss Physcomitrella patens. Senger, T., Wichard, T., Kunze, S., Göbel, C., Lerchl, J., Pohnert, G., Feussner, I. J. Biol. Chem. (2005) [Pubmed]
  13. Characterization of two highly similar Rad51 homologs of Physcomitrella patens. Ayora, S., Piruat, J.I., Luna, R., Reiss, B., Russo, V.E., Aguilera, A., Alonso, J.C. J. Mol. Biol. (2002) [Pubmed]
  14. c-MYB oncogene-like genes encoding three MYB repeats occur in all major plant lineages. Kranz, H., Scholz, K., Weisshaar, B. Plant J. (2000) [Pubmed]
  15. Tissue- and stage-specific RNA editing of rps 14 transcripts in moss (Physcomitrella patens) chloroplasts. Miyata, Y., Sugita, M. J. Plant Physiol. (2004) [Pubmed]
  16. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Strepp, R., Scholz, S., Kruse, S., Speth, V., Reski, R. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
 
WikiGenes - Universities