The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

ABSCISIC ACID     (2Z,4E)-5-[(1R)-1-hydroxy- 2,6,6-trimethyl...

Synonyms: PBI-145, A8451_SIGMA, CHEBI:28937, LMPR0103050008, AC1LD7U6, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ABSCISIC ACID

  • SKOR expression is strongly inhibited by the stress phytohormone abscisic acid, supporting the hypothesis that control of K+ translocation toward the shoots is part of the plant response to water stress [1].
  • Deletion of the Arabidopsis farnesyltransferase gene ERA1 or application of farnesyltransferase inhibitors resulted in ABA hypersensitivity of guard cell anion-channel activation and of stomatal closing [2].
  • Disrupting Nt-Syr1 function by cleavage with Clostridium botulinum type C toxin or competition with a soluble fragment of Nt-Syr1 prevents potassium and chloride ion channel response to ABA in guard cells and implicates Nt-Syr1 in an ABA-signaling cascade [3].
  • Gibberellic acid (GA) promotes hydrolase production, whereas abscisic acid (ABA), hypoxia, and osmotic stress reduce amylase production [4].
  • WCSP1 induction was cold-specific because neither abscisic acid treatment, drought, salinity, nor heat stress induced WCSP1 expression [5].
 

High impact information on ABSCISIC ACID

 

Chemical compound and disease context of ABSCISIC ACID

 

Biological context of ABSCISIC ACID

 

Anatomical context of ABSCISIC ACID

  • In addition, we have shown that abscisic acid stimulates this phenomenon in chromoplasts, whereas gibberellic acid and auxin delay it [20].
  • Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts [21].
  • The mechanisms by which abscisic acid (ABA) activates the release of K(+)(Rb(+)) from the vacuole of stomatal guard cells, a process essential for ABA-induced stomatal closure, have been investigated by tracer flux measurements [22].
  • We suggest that attenuation of the transpiration stream in whole plants is required for the up-regulation of the P(os) of the membranes, and that this up-regulation, which does not require ABA, is mediated by the activation of aquaporins in the plasma membrane [23].
  • However, various agents (such as wounding, ethylene, abscisic acid) can cause the microtubules to reorientate by 90 degrees so that they become aligned parallel to the cell's long axis, allowing lateral expansion instead of elongation [24].
 

Associations of ABSCISIC ACID with other chemical compounds

 

Gene context of ABSCISIC ACID

 

Analytical, diagnostic and therapeutic context of ABSCISIC ACID

  • In response to drought, plants synthesize the hormone abscisic acid, which triggers closing of stomata, thus reducing water loss [35].
  • The Viviparous-1 (VP1) transcriptional activator of maize is required for abscisic acid induction of maturation-specific genes late in seed development leading to acquisition of desiccation tolerance and arrest in embryo growth [36].
  • Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells [37].
  • We report here on the molecular cloning of GLUCOSE INSENSITIVE1 (GIN1) and ABSCISIC ACID DEFICIENT2 (ABA2) which encodes a unique Arabidopsis short-chain dehydrogenase/reductase (SDR1) that functions as a molecular link between nutrient signaling and plant hormone biosynthesis [38].
  • In the Arabidopsis alcohol dehydrogenase (Adh) promoter, the G-box regulates expression in response to cold and dehydration, presumably through the action of abscisic acid (ABA), and is bound by a nuclear protein complex in vivo during expression in cell cultures [39].

References

  1. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., Bruneau, D., Boucherez, J., Michaux-Ferrière, N., Thibaud, J.B., Sentenac, H. Cell (1998) [Pubmed]
  2. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Pei, Z.M., Ghassemian, M., Kwak, C.M., McCourt, P., Schroeder, J.I. Science (1998) [Pubmed]
  3. A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Leyman, B., Geelen, D., Quintero, F.J., Blatt, M.R. Science (1999) [Pubmed]
  4. Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells. Kuo, A., Cappelluti, S., Cervantes-Cervantes, M., Rodriguez, M., Bush, D.S. Plant Cell (1996) [Pubmed]
  5. A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. Karlson, D., Nakaminami, K., Toyomasu, T., Imai, R. J. Biol. Chem. (2002) [Pubmed]
  6. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Hugouvieux, V., Kwak, J.M., Schroeder, J.I. Cell (2001) [Pubmed]
  7. Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Li, J., Kinoshita, T., Pandey, S., Ng, C.K., Gygi, S.P., Shimazaki, K., Assmann, S.M. Nature (2002) [Pubmed]
  8. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Ng, C.K., Carr, K., McAinsh, M.R., Powell, B., Hetherington, A.M. Nature (2001) [Pubmed]
  9. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Gómez, J., Sánchez-Martínez, D., Stiefel, V., Rigau, J., Puigdomènech, P., Pagès, M. Nature (1988) [Pubmed]
  10. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Zhu, J., Verslues, P.E., Zheng, X., Lee, B.H., Zhan, X., Manabe, Y., Sokolchik, I., Zhu, Y., Dong, C.H., Zhu, J.K., Hasegawa, P.M., Bressan, R.A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  11. The sax1 mutation defines a new locus involved in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. Ephritikhine, G., Pagant, S., Fujioka, S., Takatsuto, S., Lapous, D., Caboche, M., Kendrick, R.E., Barbier-Brygoo, H. Plant J. (1999) [Pubmed]
  12. Expression of CAP2, an APETALA2-Family Transcription Factor from Chickpea, Enhances Growth and Tolerance to Dehydration and Salt Stress in Transgenic Tobacco. Shukla, R.K., Raha, S., Tripathi, V., Chattopadhyay, D. Plant Physiol. (2006) [Pubmed]
  13. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Weaver, L.M., Gan, S., Quirino, B., Amasino, R.M. Plant Mol. Biol. (1998) [Pubmed]
  14. The promoter of the nematode resistance gene Hs1pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana. Thurau, T., Kifle, S., Jung, C., Cai, D. Plant Mol. Biol. (2003) [Pubmed]
  15. A plant leucine zipper protein that recognizes an abscisic acid response element. Guiltinan, M.J., Marcotte, W.R., Quatrano, R.S. Science (1990) [Pubmed]
  16. Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Allen, G.J., Chu, S.P., Schumacher, K., Shimazaki, C.T., Vafeados, D., Kemper, A., Hawke, S.D., Tallman, G., Tsien, R.Y., Harper, J.F., Chory, J., Schroeder, J.I. Science (2000) [Pubmed]
  17. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Zhang, X., Garreton, V., Chua, N.H. Genes Dev. (2005) [Pubmed]
  18. Plant hormone signaling: getting the message out. McCourt, P. Mol. Cell (2001) [Pubmed]
  19. Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Niu, X., Helentjaris, T., Bate, N.J. Plant Cell (2002) [Pubmed]
  20. Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Deruère, J., Römer, S., d'Harlingue, A., Backhaus, R.A., Kuntz, M., Camara, B. Plant Cell (1994) [Pubmed]
  21. Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts. Gilroy, S., Jones, R.L. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  22. ABA activates multiple Ca(2+) fluxes in stomatal guard cells, triggering vacuolar K(+)(Rb(+)) release. MacRobbie, E.A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  23. The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells. Morillon, R., Chrispeels, M.J. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  24. Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells. Yuan, M., Shaw, P.J., Warn, R.M., Lloyd, C.W. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  25. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Leung, J., Bouvier-Durand, M., Morris, P.C., Guerrier, D., Chefdor, F., Giraudat, J. Science (1994) [Pubmed]
  26. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J., León, P. Genes Dev. (2000) [Pubmed]
  27. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Hattori, T., Vasil, V., Rosenkrans, L., Hannah, L.C., McCarty, D.R., Vasil, I.K. Genes Dev. (1992) [Pubmed]
  28. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D., Schroeder, J.I. EMBO J. (2003) [Pubmed]
  29. Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Fan, L., Zheng, S., Wang, X. Plant Cell (1997) [Pubmed]
  30. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Meyer, K., Leube, M.P., Grill, E. Science (1994) [Pubmed]
  31. A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. Gaxiola, R., de Larrinoa, I.F., Villalba, J.M., Serrano, R. EMBO J. (1992) [Pubmed]
  32. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Leung, J., Merlot, S., Giraudat, J. Plant Cell (1997) [Pubmed]
  33. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Mustilli, A.C., Merlot, S., Vavasseur, A., Fenzi, F., Giraudat, J. Plant Cell (2002) [Pubmed]
  34. Physical and functional interaction of the Arabidopsis K(+) channel AKT2 and phosphatase AtPP2CA. Chérel, I., Michard, E., Platet, N., Mouline, K., Alcon, C., Sentenac, H., Thibaud, J.B. Plant Cell (2002) [Pubmed]
  35. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Schroeder, J.I., Kwak, J.M., Allen, G.J. Nature (2001) [Pubmed]
  36. Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize. Hoecker, U., Vasil, I.K., McCarty, D.R. Genes Dev. (1995) [Pubmed]
  37. Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells. Zentella, R., Yamauchi, D., Ho, T.H. Plant Cell (2002) [Pubmed]
  38. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Cheng, W.H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., Koshiba, T., Sheen, J. Plant Cell (2002) [Pubmed]
  39. Transcription factor veracity: is GBF3 responsible for ABA-regulated expression of Arabidopsis Adh? Lu, G., Paul, A.L., McCarty, D.R., Ferl, R.J. Plant Cell (1996) [Pubmed]
 
WikiGenes - Universities