The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Cyanobacterial genes transmitted to the nucleus before divergence of red algae in the Chromista.

The plastids of red algae, green plants, and glaucophytes may have originated directly from a cyanobacterium-like prokaryote via primary endosymbiosis. In contrast, the plastids of other lineages of eukaryotic phototrophs appear to be the result of secondary or tertiary endosymbiotic events involving a phototrophic eukaryote and a eukaryotic host cell. Although phylogenetic analyses of multiple plastid genes from a wide range of eukaryotic lineages have been carried out, the phylogenetic positions of the secondary plastids of the Chromista (Heterokontophyta, Haptophyta and Cryptophyta) are ambiguous in a range of different analyses. This ambiguity may be the result of unusual substitutions or bias in the plastid genes established by the secondary endosymbiosis. In this study, we carried out phylogenetic analyses of five nuclear genes of cyanobacterial origin (6-phosphogluconate dehydrogenase [gnd], oxygen-evolving-enhancer [psbO], phosphoglycerate kinase [ pgk], delta-aminolevulinic acid dehydratase [aladh], and ATP synthase gamma [atpC] genes), using the genome sequence data from the primitive red alga Cyanidioschyzon merolae 10D. The sequence data robustly resolved the origin of the cyanobacterial genes in the nuclei of the Chromista (Heterokontophyta and Haptophyta) and Dinophyta, before the divergence of the extant red algae (including Porphyra [Rhodophyceae] and Cyanidioschyzon [Cyadidiophyceae]). Although it is likely that gnd genes in the Chromista were transmitted from the cyanobacterium-like ancestor of plastids in the primary endosymbiosis, other genes might have been transferred from nuclei of a red algal ancestor in the secondary endosymbiosis. Therefore, the results indicate that the Chromista might have originated from the ancient secondary endosymbiosis before the divergence of extant red algae.[1]

References

  1. Cyanobacterial genes transmitted to the nucleus before divergence of red algae in the Chromista. Nozaki, H., Matsuzaki, M., Misumi, O., Kuroiwa, H., Hasegawa, M., Higashiyama, T., Shin-I, T., Kohara, Y., Ogasawara, N., Kuroiwa, T. J. Mol. Evol. (2004) [Pubmed]
 
WikiGenes - Universities