The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Porphyra

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Porphyra

  • The deduced polypeptide sequence is homologous to other reported HOs from organisms containing phycobilisomes (Porphyra purpurea and Synechocystis sp. strain PCC 6803) and, to a lesser extent, to vertebrate enzymes [1].
 

High impact information on Porphyra

  • This fraction could be replaced with commercial ferredoxin derived from spinach or the red alga, Porphyra umbilicalis [2].
  • Variant forms of a group I intron in nuclear small-subunit rRNA genes of the marine red alga Porphyra spiralis var. amplifolia [3].
  • The cp-genome of C. caldarium cannot be readily aligned with that of Porphyra purpurea, a multicellular red alga, or Guillardia theta due to a displacement of a region of the cp-genome [4].
  • We previously reported that fatty acyl-CoA esters activate ryanodine receptor/Ca2+ release channels in a terminal cisternae fraction from rabbit skeletal muscle [Fulceri, Nori, Gamberucci, Volpe, Giunti and Benedetti (1994) Cell Calcium 15, 109-116] [5].
  • The 5S ribosomal RNA sequences have been determined for the rhodoplast of the red alga Porphyra umbilicalis and the chloroplast of the conifer Juniperus media [6].
 

Biological context of Porphyra

 

Associations of Porphyra with chemical compounds

  • An earlier report (T. Fujiwara, J. Biochem. 49:361-367, 1961) contended, on the basis of the isolation of sugar-containing peptic chromopeptides from Porphyra tenera R-phycoerythrin, that this red algal phycobiliprotein is a glycoprotein [12].
  • To investigate the role of the heme axial ligand in the conformational stability of c-type cytochrome, we constructed M58C and M58H mutants of the red alga Porphyra yezoensis cytochrome c(6) in which the sixth heme iron ligand (Met58) was replaced with Cys and His residues, respectively [13].
  • ESI-MS/MS showed unusual small radical losses, generally resulting from the loss of a methyl group with the exception of shinorine and porphyra for which the initial losses were 30 and 44 Da, respectively [14].
  • Polysaccharide from Porphyra yezoensis (PYPS) was degraded by ultrasound in this study [15].
  • Three porphyran preparations with high emulsifying ability and varying molecular mass, 3,6-anhydrogalactose content, and sulfate content without any protenaceous component were prepared from dried nori processed from Porphyra yezoensis, a red alga [16].
 

Gene context of Porphyra

References

  1. The heme oxygenase gene (pbsA) in the red alga Rhodella violacea is discontinuous and transcriptionally activated during iron limitation. Richaud, C., Zabulon, G. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  2. Biosynthesis of phycobilins. Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium. Beale, S.I., Cornejo, J. J. Biol. Chem. (1991) [Pubmed]
  3. Variant forms of a group I intron in nuclear small-subunit rRNA genes of the marine red alga Porphyra spiralis var. amplifolia. Oliveira, M.C., Ragan, M.A. Mol. Biol. Evol. (1994) [Pubmed]
  4. The structure and gene repertoire of an ancient red algal plastid genome. Glöckner, G., Rosenthal, A., Valentin, K. J. Mol. Evol. (2000) [Pubmed]
  5. Fatty acyl-CoA-acyl-CoA-binding protein complexes activate the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum. Fulceri, R., Knudsen, J., Giunti, R., Volpe, P., Nori, A., Benedetti, A. Biochem. J. (1997) [Pubmed]
  6. The 5S ribosomal RNA sequences of a red algal rhodoplast and a gymnosperm chloroplast. Implications for the evolution of plastids and cyanobacteria. Van den Eynde, H., De Baere, R., De Roeck, E., Van de Peer, Y., Vandenberghe, A., Willekens, P., De Wachter, R. J. Mol. Evol. (1988) [Pubmed]
  7. Chloroplast encoded thioredoxin genes in the red algae Porphyra yezoensis and Griffithsia pacifica: evolutionary implications. Reynolds, A.E., Chesnick, J.M., Woolford, J., Cattolico, R.A. Plant Mol. Biol. (1994) [Pubmed]
  8. Complex group-I introns in nuclear SSU rDNA of red and green algae: evidence of homing-endonuclease pseudogenes in the Bangiophyceae. Haugen, P., Huss, V.A., Nielsen, H., Johansen, S. Curr. Genet. (1999) [Pubmed]
  9. Bioavailability of dried asakusanori (porphyra tenera) as a source of Cobalamin (Vitamin B12). Yamada, K., Yamada, Y., Fukuda, M., Yamada, S. International journal for vitamin and nutrition research. Internationale Zeitschrift für Vitamin- und Ernährungsforschung. Journal international de vitaminologie et de nutrition. (1999) [Pubmed]
  10. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Zhang, Q., Li, N., Zhou, G., Lu, X., Xu, Z., Li, Z. Pharmacol. Res. (2003) [Pubmed]
  11. Cloning and molecular analyses of the Arabidopsis thaliana plastid pyruvate dehydrogenase subunits. Johnston, M.L., Luethy, M.H., Miernyk, J.A., Randall, D.D. Biochim. Biophys. Acta (1997) [Pubmed]
  12. Absence of glycosylation on cyanobacterial phycobilisome linker polypeptides and rhodophytan phycoerythrins. Fairchild, C.D., Jones, I.K., Glazer, A.N. J. Bacteriol. (1991) [Pubmed]
  13. Increasing the conformational stability by replacement of heme axial ligand in c-type cytochrome. Satoh, T., Itoga, A., Isogai, Y., Kurihara, M., Yamada, S., Natori, M., Suzuki, N., Suruga, K., Kawachi, R., Arahira, M., Nishio, T., Fukazawa, C., Oku, T. FEBS Lett. (2002) [Pubmed]
  14. Electrospray ionization tandem mass spectrometric and electron impact mass spectrometric characterization of mycosporine-like amino acids. Whitehead, K., Hedges, J.I. Rapid Commun. Mass Spectrom. (2003) [Pubmed]
  15. Ultrasonic degradation of polysaccharide from a red algae (Porphyra yezoensis). Zhou, C., Ma, H. J. Agric. Food Chem. (2006) [Pubmed]
  16. Interaction of porphyran with a hydrophobic surface and stabilization of liposomes. Hirano, Y., Hattori, M., Takahashi, K. J. Agric. Food Chem. (2005) [Pubmed]
  17. Structure and organization of rhodophyte and chromophyte plastid genomes: implications for the ancestry of plastids. Shivji, M.S., Li, N., Cattolico, R.A. Mol. Gen. Genet. (1992) [Pubmed]
  18. Elongation factor 1 alpha genes of the red alga Porphyra purpurea include a novel, developmentally specialized variant. Liu, Q.Y., Baldauf, S.L., Reith, M.E. Plant Mol. Biol. (1996) [Pubmed]
  19. Variability of iodine content in common commercially available edible seaweeds. Teas, J., Pino, S., Critchley, A., Braverman, L.E. Thyroid (2004) [Pubmed]
  20. The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Zhang, Q., Li, N., Liu, X., Zhao, Z., Li, Z., Xu, Z. Carbohydr. Res. (2004) [Pubmed]
  21. Telomerase inhibition by sulfoquinovosyldiacylglycerol from edible purple laver (Porphyra yezoensis). Eitsuka, T., Nakagawa, K., Igarashi, M., Miyazawa, T. Cancer Lett. (2004) [Pubmed]
 
WikiGenes - Universities