The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The post-replication repair RAD18 and RAD6 genes are involved in the prevention of spontaneous mutations caused by 7,8-dihydro-8-oxoguanine in Saccharomyces cerevisiae.

7,8-dihydro-8-oxoguanine (8-oxoG) is an abundant and mutagenic lesion produced in DNA exposed to free radicals and reactive oxygen species. In Saccharomyces cerevisiae, the OGG1 gene encodes the 8-oxoG DNA N-glycosylase/AP lyase (Ogg1), which is the functional homologue of the bacterial Fpg. Ogg1-deficient strains are spontaneous mutators that accumulate GC to TA transversions due to unrepaired 8-oxoG in DNA. In yeast, DNA mismatch repair (MMR) and translesion synthesis (TLS) by DNA polymerase eta also play a role in the prevention of the mutagenic effect of 8-oxoG. In the present study, we show the RAD18 and RAD6 genes that are required to initiate post-replication repair (PRR) are also involved in the prevention of mutations by 8-oxoG. Consistently, a synergistic increase in spontaneous CanR and Lys+ mutation rates is observed in the absence of Rad6 or Rad18 proteins in ogg1 mutant strains. Spectra of CaR mutations in ogg1 rad18 and ogg1 rad6 double mutants show a strong bias in the favor of GC to TA transversions, which are 137- and 189-fold higher than in the wild-type, respectively. The results also show that Poleta (RAD30 gene product) plays a critical role on the prevention of mutations at 8-oxoG, whereas Polzeta (REV3 gene product) does not. Our current model suggests that the Rad6-Rad18 complex targets Poleta at DNA gaps that result from the MMR-mediated excision of adenine mispaired with 8-oxoG, allowing error-free dCMP incorporation opposite to this lesion.[1]

References

 
WikiGenes - Universities