The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

An antagonistic 5-HT receptor system in the auricles of the systemic heart complex of Sepia officinalis L. (Cephalopoda) shows 5-HT1 and 5-HT4 subtype properties.

In pharmacological bioassays on isolated ring-shaped auricle preparations of Sepia officinalis, the action of the specific 5-hydroxytryptamine (5-HT) agonists 8-OH-DPAT (5-HT1a), CP-93129 (5-HT1b), TFMPP (5-HT1b) and RS-67333 (5-HT4) on these autonomously contractile compartments was studied. 8-OH-DPAT and CP-93129 induced mainly positive effects on frequency and tone on the isotonically suspended auricles. The positive effect of 8-OH-DPAT on frequency was blocked by the specific 5-HT1a antagonist NAN-190. The 5-HT1b agonist TFMPP caused similar effects on tone and a positive impact on the auricular amplitude. The highly specific 5-HT4 agonist RS-67333 induced an effect opposite to the action of 5-HT1 agonists inducing mainly negative effects on frequency, amplitude and tone, causing a diastolic standstill at a concentration of 10(-6) M. These negative effects were blocked by the adenylyl cyclase inhibitor SQ-22,536 in the absence of a diastolic standstill. The opposing action of 5-HT1 and 5-HT4 agonists on auricular contractile activity suggests that an antagonistic 5-HT-receptor system exists within the auricular myocardial cells of S. officinalis, probably consisting of 5-HT1- and 5-HT4-like subtypes. The results also suggest that adenylyl cyclase acts as the intracellular target enzyme of both signal transduction mechanisms.[1]


WikiGenes - Universities