The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Simultaneous and sensitive measurement of anabasine, nicotine, and nicotine metabolites in human urine by liquid chromatography-tandem mass spectrometry.

BACKGROUND: Determination of nicotine metabolism/pharmacokinetics provides a useful tool for estimating uptake of nicotine and tobacco-related toxicants, for understanding the pharmacologic effects of nicotine and nicotine addiction, and for optimizing nicotine dependency treatment. METHODS: We developed a sensitive method for analysis of nicotine and five major nicotine metabolites, including cotinine, trans-3'-hydroxycotinine, nicotine-N'-oxide, cotinine-N-oxide, and nornicotine, in human urine by liquid chromatography coupled with a TSQ Quantum triple quadrupole tandem mass spectrometer (LC/MS/MS). Urine samples to which deuterium-labeled internal standards had been added were extracted with a simple solid-phase extraction procedure. Anabasine, a minor tobacco alkaloid, was also included. RESULTS: The quantification limits of the method were 0.1-0.2 microg/L, except for nicotine (1 microg/L). Cotinine-N-oxide, trans-3'-hydroxycotinine, nicotine, and anabasine in urine were almost completely recovered by the solid-phase extraction, whereas the mean extraction recoveries of nicotine-N'-oxide, cotinine, and nornicotine were 51.4%, 78.6%, and 78.8%, respectively. This procedure provided a linearity of three to four orders of magnitude for the target analytes: 0.2-400 microg/L for nicotine-N'-oxide, cotinine-N-oxide, and anabasine; 0.2-4000 microg/L for cotinine, nornicotine, and trans-3'-hydroxycotinine; and 1.0-4000 microg/L for nicotine. The overall interday method imprecision and recovery were 2.5-18% and 92-109%, respectively. CONCLUSIONS: This sensitive LC/MS/MS procedure can be used to determine nicotine metabolism profiles of smokers, people during nicotine replacement therapy, and passively exposed nonsmokers. This method avoids the need for a time-consuming and labor-intensive sample enrichment step and thus allows for high-throughput sample preparation and automation.[1]


WikiGenes - Universities