The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Characterization of the endocannabinoid system in early human pregnancy.

In recent years, it has been demonstrated that high circulating levels of the endogenous cannabinoid anandamide, resulting from low expression of its metabolizing enzyme fatty acid amide hydrolase (FAAH), may contribute to spontaneous miscarriage and poor outcome in women undergoing in vitro fertilization. The site of action of this compound, however, has not been determined. In this study, we examined the distribution of the cannabinoid receptors, CB1 and CB2, and the endocannabinoid-metabolizing enzyme FAAH in first trimester human placenta. Here, we show that FAAH is expressed throughout the human first trimester placenta, in extravillous trophoblast columns, villous cytotrophoblasts, syncytiotrophoblasts, and macrophages. Furthermore, FAAH mRNA levels appear to be regulated during gestation, with levels peaking at 11 wk before declining again. The immune system-associated cannabinoid CB2 receptors were localized only to placental macrophages. Interestingly, the cannabinoid receptor CB1 was not identified in first trimester placenta despite having previously been shown to be present in placental tissues at term. These findings suggest that the placenta may form a barrier preventing maternal-fetal transfer of anandamide and/or modulate local levels of anandamide by regulation of FAAH expression with gestation.[1]


  1. Characterization of the endocannabinoid system in early human pregnancy. Helliwell, R.J., Chamley, L.W., Blake-Palmer, K., Mitchell, M.D., Wu, J., Kearn, C.S., Glass, M. J. Clin. Endocrinol. Metab. (2004) [Pubmed]
WikiGenes - Universities