The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Shift in purine/pyrimidine base recognition upon exchanging extracellular domains in P2Y 1/6 chimeric receptors.

P2Y receptors are G protein-coupled receptors stimulated by extracellular nucleotides. Both the P2Y(1) and the P2Y(6) receptors are preferentially activated by nucleoside 5'-diphosphates, but favor different base moieties. In the case of the P2Y(1) receptor the preferred base is adenine, while the P2Y(6) receptor is activated by uracil nucleotides. To identify potential amino acid domains that interact with the base moiety, we used a chimeric receptor approach, employing the human P2Y(1) receptor as core structure to investigate the role in receptor activation of extracellular loops (ELs) and transmembrane domains (TMs) of the rat P2Y(6) receptor. The chimeric receptors were expressed in COS-7 cells and measured for stimulation of phospholipase C (PLC) induced by the potent P2Y(1) receptor agonist 2-MeSADP or the potent P2Y(6) receptor agonist UDP. Replacement of the N-terminus or EL2 resulted in low ( approximately 50 microM) potency of the agonist 2-MeSADP, thus confirming the importance of EL2 in ligand recognition. Upon replacement of several regions, the potency of the P2Y(1) agonist 2-MeSADP was either 1-2 microM (N-terminus and EL1, or EL1 and EL3) or 72 microM (N-terminus and EL3). Concurrent replacement of three regions (N-terminus, EL1, and EL3) completely precluded activation by 2-MeSADP. Our study identified domains of the P2Y(6) receptor that contribute to receptor activation by UDP and hence seem to be involved in uracil recognition. Upon replacement with extracellular domains of the P2Y(6) receptor sequence we observed a trend toward gain of receptor-induced PLC activation by UDP, for example, in the chimera containing replacements of both the N-terminus and EL1. Exchange of three receptor domains led to a construct with an EC(50) value for UDP of 19 microM and a maximal inositol phosphate accumulation similar to the native P2Y(6) receptor. Within receptor constructs of combined domain exchanges the additional substitution of Tyr(110) by the corresponding Asn from the P2Y(6) receptor showed a significant increase for activation by UDP, but only when combined with the N-terminal domain and TM1. The residue Tyr(110) was identified to play an important role in the recognition of the nucleobase in the P2Y(1) and P2Y(6) receptors.[1]


  1. Shift in purine/pyrimidine base recognition upon exchanging extracellular domains in P2Y 1/6 chimeric receptors. Hoffmann, C., Soltysiak, K., West, P.L., Jacobson, K.A. Biochem. Pharmacol. (2004) [Pubmed]
WikiGenes - Universities