The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Corticotropin-releasing hormone potentiates neural injury induced by oxygen-glucose deprivation: a possible involvement of microglia.

While corticotropin-releasing hormone (CRH) has been implicated in a variety of brain disorders such as ischemic injury, the molecular mechanism by which CRH elicits its activities is largely unclear. In the present study, we have determined the effect of CRH on oxygen-glucose deprivation (OGD) induced apoptosis in fetal hippocampal neurons. CRH alone at concentrations of 10-200 nM had no effect on neuronal apoptosis. However, when neurons were co-cultured with microglia, CRH alone at concentrations greater than 100 nM induced neuronal apoptosis and CRH potentiated significant neuronal apoptosis following exposure to OGD. The effect of CRH on neuronal apoptosis was inhibited in the presence of the CRH antagonist astressin. Real-time RT-PCR revealed an increase in mRNA levels of Fas ligand (Fas-L), a membrane protein related to the TNF family, in cultured microglia following OGD exposure. In the presence of CRH, OGD-induced Fas-L expression was significantly increased. The effect of CRH on Fas-L expression was inhibited by specific inhibitors of the extracellular signal- regulated protein kinase (PD98059) and p38 mitogen-activated protein kinase (SB203580). These results suggest that CRH potentiates neuronal apoptosis induced by OGD in the presence of microglia and that this effect may be mediated through the induction of proinflammatory mediators in microglia.[1]

References

 
WikiGenes - Universities