The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Techniques: GPCR assembly, pharmacology and screening by flow cytometry.

Flow cytometers are well known for their ability to analyze and sort cells at high rates based on physiological responses and expression of protein markers. The potential for flow cytometry in G-protein-coupled receptor ( GPCR) research, however, is less well appreciated. Potential applications include: (i) the homogenous discrimination of free and bound ligands or proteins in both cellular and microsphere-based assays; and (ii) multiplexed ('suspension array') analysis of cell responses and protein-protein interactions. Innovative sample-handling systems also provide sub-second resolution of interaction kinetics and 1 second per well throughput of microliter-sized samples from multiwell plates. Flow cytometric methods using microspheres for analysis of GPCRs that interact with intracellular and extracellular binding partners such as ligands, G proteins and kinases have been established. These analyses can produce quantitative pharmacological data analogous to radioligand assays, and, in some cases, the probes can be integrated into the assembly as fluorescent fusion proteins.[1]

References

  1. Techniques: GPCR assembly, pharmacology and screening by flow cytometry. Waller, A., Simons, P.C., Biggs, S.M., Edwards, B.S., Prossnitz, E.R., Sklar, L.A. Trends Pharmacol. Sci. (2004) [Pubmed]
 
WikiGenes - Universities