The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Chiral ligand exchange capillary electrophoresis using borate anion as a central ion.

Native DL-pantothenic acid, having a 1,3-diol structure, was chirally resolved by ligand exchange capillary electrophoresis using (S)-3-amino-1,2-propanediol as a chiral selector and the borate anion as a central ion. The optimum conditions for both high resolution and short migration time of DL-pantothenic acid were found to be 200 mM (S)-3-amino-1,2-propanediol and 200 mM borate buffer (pH 9.2) containing 15% methanol with an applied voltage of +25 kV at 20 degrees C, using direct detection at 200 nm. With this system, the resolution (Rs) of racemic pantothenic acid was approximately 1. 7. When (S)-1,2-propanediol, (S)-1,2,3-propanetriol, (S)-1,3-butanediol or (S)-1-amino-2-propanol were used as chiral ligand instead of (S)-3-amino-1,2-propanediol, DL-pantothenic acid was not enantioseparated. When borate was replaced with Tris or butylborate, no chiral separation was achieved. Therefore, the ionic interaction between the amino and carboxyl groups of the ternary complex may play an important role in the enantioseparation of DL-pantothenic acid by the proposed CE system.[1]

References

  1. Chiral ligand exchange capillary electrophoresis using borate anion as a central ion. Kodama, S., Yamamoto, A., Iio, R., Sakamoto, K., Matsunaga, A., Hayakawa, K. The Analyst. (2004) [Pubmed]
 
WikiGenes - Universities