Complement factor h limits immune complex deposition and prevents inflammation and scarring in glomeruli of mice with chronic serum sickness.
Factor H is the major complement regulator in plasma. Abnormalities in factor H have been implicated in membranoproliferative glomerulonephritis in both humans and experimental animals. It has been shown that factor H on rodent platelets functions analogously to human erythrocyte complement receptor 1 in its role to traffic immune complexes to the mononuclear phagocyte system. C57BL/6 factor H-deficient mice (Cfh(-/-)) and wild-type (wt) controls were immunized daily for 5 wk with heterologous apoferritin to study the chronic serum sickness GN model. Immunizations were started in 6- to 8-wk-old mice, which was before the development of spontaneous membranoproliferative glomerulonephritis in some Cfh(-/-) animals. Glomerular deposition of IgG immune complexes in glomeruli was qualitatively and quantitatively increased in Cfh(-/-) mice compared with wt mice. Consistent with the increase in glomerular immune complexes and possibly because of alternative pathway complement activation, Cfh(-/-) mice had increased glomerular C3 deposition. Wt mice developed no glomerular pathology. In contrast, Cfh(-/-) mice developed diffuse proliferative GN with focal crescents and glomerulosclerosis. In addition, there was significantly increased expression of collagen IV, fibronectin, and laminin mRNA in Cfh(-/-) glomeruli. These data show a role for platelet-associated factor H to process immune complexes and limit their accumulation in glomeruli. Once deposited in glomeruli, excessive complement activation can lead to glomerular inflammation and the rapid development of a scarring phenotype.[1]References
- Complement factor h limits immune complex deposition and prevents inflammation and scarring in glomeruli of mice with chronic serum sickness. Alexander, J.J., Pickering, M.C., Haas, M., Osawe, I., Quigg, R.J. J. Am. Soc. Nephrol. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg