The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Phagocytes

  • In association with these functional changes, we observed an increase in cellular contents of phagocyte cytochrome b (a critical component of the superoxide-producing oxidase) and immunoreactive cytochrome b heavy chain (the product of the gene that is defective in X-linked chronic granulomatous disease) [1].
  • HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain [2].
  • A gene of the intracellular pathogen Salmonella typhimurium that is required for virulence and intracellular survival was identified and shown to have a role in resistance to defensins and possibly to other microbicidal mechanisms of the phagocyte [3].
  • Previous studies from this laboratory have demonstrated that Mycobacterium leprae, an obligate intracellular bacterial parasite, enters human mononuclear phagocytes via complement receptors on these host cells and bacterium-bound C3 [4].
  • During the acute phase, LBP can be expected to bind gram-negative bacteria and bacterial fragments and promote the interaction of coated bacteria with phagocytes [5].

Psychiatry related information on Phagocytes


High impact information on Phagocytes

  • PTX3 acts as a functional ancestor of antibodies, recognizing microbes, activating complement, and facilitating pathogen recognition by phagocytes, hence playing a nonredundant role in resistance against selected pathogens [8].
  • Heat shock proteins appear to have been involved in innate immune responses since the emergence of phagocytes in early multicellular organisms and to have been commandeered for adaptive immune responses with the advent of specificity [9].
  • During the respiratory burst in phagocytes, H(+) current compensates for electron extrusion by NADPH oxidase [10].
  • Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte [11].
  • Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal [12].

Chemical compound and disease context of Phagocytes


Biological context of Phagocytes

  • Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment [18].
  • SM-FeSV does not induce haematopoietic malignancies in spite of the fact that its viral oncogene, v-fms, codes for a glycoprotein related to the receptor for the mononuclear phagocyte colony stimulating factor, CSF-1 [19].
  • It has been suggested that the macrophage Fc receptor (FcR) provides an efficient route of entry of virus through the attachment of non-neutralized virus-antibody complexes and that for those viruses that escape destruction by the phagocyte, antibody results in a paradoxical increase in virus replication [20].
  • Mannose binding protein (MBP) enhances mononuclear phagocyte function via a receptor that contains the 126,000 M(r) component of the C1q receptor [21].
  • As increases in cytosolic Ca(2+) concentration (¿Ca(2+)(c)) promote phagocyte antimicrobial responses, we hypothesized that CR phagocytosis of M. tuberculosis is accompanied by altered Ca(2+) signaling [22].

Anatomical context of Phagocytes


Associations of Phagocytes with chemical compounds

  • Although expression of the c-fms product (CSF-1 receptor) is normally restricted to cells of the mononuclear phagocyte series, the v-fms-coded glycoprotein can contribute to proliferative abnormalities of multiple hematopoietic lineages [28].
  • The enzyme NADPH oxidase in phagocytes is important in the body's defence against microbes: it produces superoxide anions (O2-, precursors to bactericidal reactive oxygen species) [29].
  • CO drove ischemic protection by activating soluble guanylate cyclase and thereby suppressed hypoxic induction of the gene encoding plasminogen activator inhibitor-1 (PAI-1) in mononuclear phagocytes, which reduced accrual of microvascular fibrin [30].
  • Rap1A was found to form stoichiometric complexes with the cytochrome b558 component of the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system [31].
  • Phagocyte impotence caused by an invasive bacterial adenylate cyclase [32].

Gene context of Phagocytes


Analytical, diagnostic and therapeutic context of Phagocytes


  1. Partial correction of the phagocyte defect in patients with X-linked chronic granulomatous disease by subcutaneous interferon gamma. Ezekowitz, R.A., Dinauer, M.C., Jaffe, H.S., Orkin, S.H., Newburger, P.E. N. Engl. J. Med. (1988) [Pubmed]
  2. HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain. O'Brien, W.A., Koyanagi, Y., Namazie, A., Zhao, J.Q., Diagne, A., Idler, K., Zack, J.A., Chen, I.S. Nature (1990) [Pubmed]
  3. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Fields, P.I., Groisman, E.A., Heffron, F. Science (1989) [Pubmed]
  4. Phenolic glycolipid-1 of Mycobacterium leprae binds complement component C3 in serum and mediates phagocytosis by human monocytes. Schlesinger, L.S., Horwitz, M.A. J. Exp. Med. (1991) [Pubmed]
  5. Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. Wright, S.D., Tobias, P.S., Ulevitch, R.J., Ramos, R.A. J. Exp. Med. (1989) [Pubmed]
  6. Proinflammatory profile of cytokine production by human monocytes and murine microglia stimulated with beta-amyloid[25-35]. Meda, L., Baron, P., Prat, E., Scarpini, E., Scarlato, G., Cassatella, M.A., Rossi, F. J. Neuroimmunol. (1999) [Pubmed]
  7. Modulatory effects of dietary beta-carotene on blood and mammary leukocyte function in periparturient dairy cows. Michal, J.J., Heirman, L.R., Wong, T.S., Chew, B.P., Frigg, M., Volker, L. J. Dairy Sci. (1994) [Pubmed]
  8. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Garlanda, C., Bottazzi, B., Bastone, A., Mantovani, A. Annu. Rev. Immunol. (2005) [Pubmed]
  9. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Srivastava, P. Annu. Rev. Immunol. (2002) [Pubmed]
  10. Voltage-gated proton channels and other proton transfer pathways. Decoursey, T.E. Physiol. Rev. (2003) [Pubmed]
  11. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Gardai, S.J., McPhillips, K.A., Frasch, S.C., Janssen, W.J., Starefeldt, A., Murphy-Ullrich, J.E., Bratton, D.L., Oldenborg, P.A., Michalak, M., Henson, P.M. Cell (2005) [Pubmed]
  12. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Lauber, K., Bohn, E., Kröber, S.M., Xiao, Y.J., Blumenthal, S.G., Lindemann, R.K., Marini, P., Wiedig, C., Zobywalski, A., Baksh, S., Xu, Y., Autenrieth, I.B., Schulze-Osthoff, K., Belka, C., Stuhler, G., Wesselborg, S. Cell (2003) [Pubmed]
  13. Chloroquine induces human mononuclear phagocytes to inhibit and kill Cryptococcus neoformans by a mechanism independent of iron deprivation. Levitz, S.M., Harrison, T.S., Tabuni, A., Liu, X. J. Clin. Invest. (1997) [Pubmed]
  14. Technetium 99m phagocyte scanning in inflammatory bowel disease. Becker, W., Fischbach, W. Gastroenterology (1989) [Pubmed]
  15. CD14 enhances cellular responses to endotoxin without imparting ligand-specific recognition. Delude, R.L., Savedra, R., Zhao, H., Thieringer, R., Yamamoto, S., Fenton, M.J., Golenbock, D.T. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  16. Abnormal activation of H+ conductance in NADPH oxidase-defective neutrophils. Nanda, A., Grinstein, S., Curnutte, J.T. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  17. The envelope glycoprotein of human immunodeficiency virus type 1 stimulates release of neurotoxins from monocytes. Giulian, D., Wendt, E., Vaca, K., Noonan, C.A. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  18. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Brown, S., Heinisch, I., Ross, E., Shaw, K., Buckley, C.D., Savill, J. Nature (2002) [Pubmed]
  19. The v-fms oncogene induces factor independence and tumorigenicity in CSF-1 dependent macrophage cell line. Wheeler, E.F., Rettenmier, C.W., Look, A.T., Sherr, C.J. Nature (1986) [Pubmed]
  20. Monoclonal anti-Fc receptor IgG blocks antibody enhancement of viral replication in macrophages. Peiris, J.S., Gordon, S., Unkeless, J.C., Porterfield, J.S. Nature (1981) [Pubmed]
  21. Mannose binding protein (MBP) enhances mononuclear phagocyte function via a receptor that contains the 126,000 M(r) component of the C1q receptor. Tenner, A.J., Robinson, S.L., Ezekowitz, R.A. Immunity (1995) [Pubmed]
  22. Inhibition of Ca(2+) signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. Malik, Z.A., Denning, G.M., Kusner, D.J. J. Exp. Med. (2000) [Pubmed]
  23. Identification of a factor that links apoptotic cells to phagocytes. Hanayama, R., Tanaka, M., Miwa, K., Shinohara, A., Iwamatsu, A., Nagata, S. Nature (2002) [Pubmed]
  24. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Abo, A., Pick, E., Hall, A., Totty, N., Teahan, C.G., Segal, A.W. Nature (1991) [Pubmed]
  25. Regulation of the human neutrophil NADPH oxidase by the Rac GTP-binding proteins. Bokoch, G.M. Curr. Opin. Cell Biol. (1994) [Pubmed]
  26. Prostaglandin E production by human blood monocytes and mouse peritoneal macrophages. Kurland, J.I., Bockman, R. J. Exp. Med. (1978) [Pubmed]
  27. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. Verhoven, B., Schlegel, R.A., Williamson, P. J. Exp. Med. (1995) [Pubmed]
  28. Multilineage hematopoietic disorders induced by transplantation of bone marrow cells expressing the v-fms oncogene. Heard, J.M., Roussel, M.F., Rettenmier, C.W., Sherr, C.J. Cell (1987) [Pubmed]
  29. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. DeCoursey, T.E., Morgan, D., Cherny, V.V. Nature (2003) [Pubmed]
  30. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Fujita, T., Toda, K., Karimova, A., Yan, S.F., Naka, Y., Yet, S.F., Pinsky, D.J. Nat. Med. (2001) [Pubmed]
  31. Inhibition of Rap1A binding to cytochrome b558 of NADPH oxidase by phosphorylation of Rap1A. Bokoch, G.M., Quilliam, L.A., Bohl, B.P., Jesaitis, A.J., Quinn, M.T. Science (1991) [Pubmed]
  32. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Confer, D.L., Eaton, J.W. Science (1982) [Pubmed]
  33. Septin: a factor in plasma that opsonizes lipopolysaccharide-bearing particles for recognition by CD14 on phagocytes. Wright, S.D., Ramos, R.A., Patel, M., Miller, D.S. J. Exp. Med. (1992) [Pubmed]
  34. A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. Su, S.B., Gong, W., Gao, J.L., Shen, W., Murphy, P.M., Oppenheim, J.J., Wang, J.M. J. Exp. Med. (1999) [Pubmed]
  35. Structure and functional expression of the human macrophage inflammatory protein 1 alpha/RANTES receptor. Gao, J.L., Kuhns, D.B., Tiffany, H.L., McDermott, D., Li, X., Francke, U., Murphy, P.M. J. Exp. Med. (1993) [Pubmed]
  36. Involvement of p40phox in activation of phagocyte NADPH oxidase through association of its carboxyl-terminal, but not its amino-terminal, with p67phox. Tsunawaki, S., Kagara, S., Yoshikawa, K., Yoshida, L.S., Kuratsuji, T., Namiki, H. J. Exp. Med. (1996) [Pubmed]
  37. Guinea pig gastric mucosal cells produce abundant superoxide anion through an NADPH oxidase-like system. Teshima, S., Rokutan, K., Nikawa, T., Kishi, K. Gastroenterology (1998) [Pubmed]
  38. Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents. Kalff, J.C., Schraut, W.H., Billiar, T.R., Simmons, R.L., Bauer, A.J. Gastroenterology (2000) [Pubmed]
  39. Tethering and tickling: a new role for the phosphatidylserine receptor. Somersan, S., Bhardwaj, N. J. Cell Biol. (2001) [Pubmed]
  40. CD44 is a phagocytic receptor. Vachon, E., Martin, R., Plumb, J., Kwok, V., Vandivier, R.W., Glogauer, M., Kapus, A., Wang, X., Chow, C.W., Grinstein, S., Downey, G.P. Blood (2006) [Pubmed]
  41. Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo. Ozaki, M., Deshpande, S.S., Angkeow, P., Bellan, J., Lowenstein, C.J., Dinauer, M.C., Goldschmidt-Clermont, P.J., Irani, K. FASEB J. (2000) [Pubmed]
WikiGenes - Universities